IDNLearner.com, o lugar para obter respostas claras. Obtenha informações de nossos especialistas, que fornecem respostas detalhadas para todas as suas perguntas e dúvidas em diversas áreas.
Sagot :
Olá, Dhone.
a) FALSA. A relação "<" NÃO é reflexiva. Se a relação "<" fosse reflexiva, deveríamos ter [tex]x < x[/tex] , o que é um absurdo, pois [tex]x = x[/tex].
b) FALSA. Seja [tex]A=\{1,2,3\}[/tex] e seja a seguinte relação [tex]R \subset A\times A[/tex] tal que [tex]R=\{(1,1),(2,2),(3,3)\}[/tex]. Para [tex]\forall (x,x) \in A \Rightarrow (x,x) \in R \Rightarrow xRx \Rightarrow R[/tex] é reflexiva. Entretanto, se tomarmos qualquer dois pares [tex](x,y)\ e\ (y,z) \in A[/tex] tais que [tex]x \neq y \ e\ y \neq z,[/tex] temos que [tex](x,y) \notin R\ e\ (y,z) \notin R \Rightarrow[/tex] não há transitividade nesta relação [tex]R[/tex] , embora ela seja reflexiva.
c) VERDADEIRA. duas relações [tex]R[/tex] e [tex]R'[/tex] são recíprocas se [tex]xRy \Rightarrow yR'x[/tex]. As relações [tex]"\leq"[/tex] e [tex]"\geq"[/tex] são, portanto, recíprocas, pois, se [tex]x \leq y \Rightarrow y \geq x[/tex] .
d) VERDADEIRA. O enunciado aqui é a própria definição de relação antissimétrica.
Apreciamos sua contribuição. Não se esqueça de voltar para fazer mais perguntas e aprender coisas novas. Seu conhecimento é essencial para nossa comunidade. Obrigado por escolher IDNLearner.com. Estamos aqui para fornecer respostas confiáveis, então visite-nos novamente para mais soluções.