Explore uma ampla gama de temas e encontre respostas no IDNLearner.com. Junte-se à nossa plataforma de perguntas e respostas para obter respostas rápidas e precisas para todas as suas perguntas importantes e resolver suas dúvidas.

Prove que , para todo numero  n >= 1 , o numero  a.n = 4^n-1/3 é inteiro e ímpar .

 

[tex]a_{n}\geq1\ ;\ a_{n}=\frac{4^n-1}{3} [/tex] 

 

a) coloque as equações que provem o enunciado;

b) o seu comentário sobre o teorema.

 

 

 

 

 



Sagot :

tentei muitoo dificil cara...

Resposta:

Utilizar pricipio da indução infinita (PIF)

Explicação passo-a-passo:

Para n=1

[tex]a_1=\frac{4^1 -1}{3}=1[/tex]

α₁ é inteiro e ímpar.

Hipótese: [tex]a_k=\frac{4^k-1}{3}=2 \cdot p+1[/tex]   com [tex]p\in \mathbb{Z}[/tex]

Tese: [tex]a_{k+1}=\frac{4^{k+1}-1}{3}[/tex] é inteiro e ímpar [tex]\forall \ k \in \mathbb{N}^*[/tex]

[tex]a_{k+1}=\frac{4^{k+1}-1}{3}=\frac{4^k \cdot 4-1}{3}=\frac{4^k\cdot4}{3}-\frac{1}{3}=\frac{4^k\cdot4}{3}-\left(\frac{4}{3}-\frac{3}{3}\right)=\frac{4^k\cdot4}{3}-\frac{4}{3}+\frac{3}{3}=\frac{4^k\cdot 4-4}{3}+1=\frac{4 \cdot \left(4^k-1\right)}{3}+1=4 \cdot \left(2 \cdot p+1\right)+1[/tex]

Como [tex]p\in \mathbb{Z}, a_{k+1}[/tex] é sempre inteiro e ímpar.