Explore uma ampla gama de temas e obtenha respostas no IDNLearner.com. Obtenha informações de nossos especialistas, que fornecem respostas confiáveis para todas as suas perguntas e dúvidas.

Calcule o perímetro do triângulo cujos vértices são os pontos médios dos lados do triângulo ABC, sendo :A(3, 1, 2), B(5,−2, 1) e C(0, 3,−3).



Sagot :

Como o perímetro é a soma de todos os lados, temos que calcular o tamanho dos lados. Como temos as coordenadas dos vértices, então podemos usar a fórmula que calcula a distância entre dois pontos para cada par de pontos dado.

Fórmula da distância entre dois pontos, ([tex](x_{1}, y_{1}, z_{1})[/tex] e [tex](x_{2}, y_{2}, z_{2})[/tex]):

[tex]d = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2} [/tex]

Para AB, teremos:

A(3, 1, 2)    B(5, -2, 1)

[tex]d_{AB} = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2} [/tex]

[tex]d_{AB} = \sqrt{(5 - 3)^2 + (-2 - 1)^2 + (1 - 2)^2} [/tex]

[tex]d_{AB} = \sqrt{2^2 + (-3)^2 + (-1)^2} [/tex]

[tex]d_{AB} = \sqrt{4 + 9 + 1} [/tex]

[tex]d_{AB} = \sqrt{14} [/tex]

Para BC, teremos:

B(5, -2, 1)    C(0, 3, -3)

[tex]d_{BC} = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2} [/tex]

[tex]d_{BC} = \sqrt{(0 - 5)^2 + (3 - (-2))^2 + (-3 - 1)^2} [/tex]

[tex]d_{BC} = \sqrt{(-5)^2 + 5^2 + (-4)^2} [/tex]

[tex]d_{BC} = \sqrt{25 + 25 + 16} [/tex]

[tex]d_{BC} = \sqrt{66} [/tex]

Para AC, teremos:

A(3, 1, 2)    C(0, 3, -3)

[tex]d_{AC} = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2} [/tex]

[tex]d_{AC} = \sqrt{(0 - 3)^2 + (3 - 1)^2 + (-3 - 2)^2} [/tex]

[tex]d_{AC} = \sqrt{(-3)^2 + 2^2 + (-5)^2} [/tex]

[tex]d_{AC} = \sqrt{9 + 4 + 25} [/tex]

[tex]d_{AC} = \sqrt{38} [/tex]

Como o perímetro é a soma de todos os lados. Basta somar as distâncias calculadas acima. Assim:

[tex]p = d_{AB} + d_{BC} + d_{AC}[/tex]

[tex]p = \sqrt{14} + \sqrt{66} + \sqrt{38}[/tex]
Obrigado por fazer parte da nossa comunidade. Sua participação é chave para nosso crescimento. Não se esqueça de voltar e compartilhar mais de seus conhecimentos e experiências. Encontre as respostas que você precisa no IDNLearner.com. Obrigado pela visita e volte logo para mais insights valiosos.