IDNLearner.com, onde suas perguntas encontram respostas claras e concisas. Junte-se à nossa plataforma para receber respostas rápidas e precisas de profissionais em diversos campos, solucionando suas dúvidas de maneira eficaz e confiável.

Seja o conjunto A = { x pertence N/ x menor ou igual 100}. Se retirarmos um número deste conjunto,aleatóriamente, qual a probabilidade deste ser par ou múltiplo de 5?



Sagot :

Pelo princípio da inclusão-exclusão temos que [tex]n(A\bigcup B) = n(A) + n(B) - n(A\bigcap B)[/tex], onde esses n indicam o número de elementos de cada conjunto. Sejam os conjuntos:

A = {conjunto formado pelos múltiplos de 2}
B = {conjunto formado pelos múltiplos de 5}, temos o seguinte:
A[tex]\bigcap[/tex]B = {conjunto formado pelos múltiplos de 10}

Pela forma que definimos esses conjuntos temos que n(A) = 50, n(B) = 20 e n(A[tex]\bigcap[/tex]B) = 10 (os elementos desses conjuntos formam uma PA de razão 2, 5 e 10, respectivamente, e o último termo é 100; o número de termos de cada PA é o número de elementos de cada conjunto). Daí:

[tex]n(A\bigcup B) = n(A) + n(B) - n(A\bigcap B) = 50 + 20 -10 [/tex] => [tex]n(A\bigcup B) = 60[/tex]

A probabilidade, então, de se retirar um número nas condições da questão é:

[tex]P=\frac{n(A\bigcup B)}{100} = \frac{60}{100}[/tex] => P = 0,6 = 60%