Junte-se ao IDNLearner.com e acesse uma mina de conhecimento. Descubra soluções detalhadas para suas perguntas graças à vasta experiência de nossa comunidade de especialistas em diferentes áreas do conhecimento.
Sagot :
[tex] \lim_{x \to 3} \frac{x^2-8x+15}{x^2-9} [/tex]
Para resolver tal questão devemos procurar simplificar primeiramente encontrando as raízes da equação no numerador e do denominador. Assim:
[tex] x^2-8x+15=0 [/tex]
Vamos resolver usando a fórmula de Báskara, onde:
[tex]x=\frac{-b \pm \sqrt{Delta}}{2a}[/tex]
[tex]Delta=b^2-4ac=(-8)^2-4.1.15=64-60=4[/tex]
[tex]x_1=\frac{-(-8)+\sqrt{4}}{2.1}[/tex]
[tex]x_1=\frac{8+2}{2}=\frac{10}{2}=5[/tex]
[tex]x_2=\frac{-(-8)-\sqrt{4}}{2.1}[/tex]
[tex]x_2=\frac{8-2}{2}=\frac{6}{2}=3[/tex]
Sabendo as raízes podemos reescrever a equação assim:
[tex] x^2-8x+15=(x-5)(x-3)[/tex]
Vamos fazer a mesma coisa com a equação do denominador, mas neste caso podemos usar um método diferente, pois podemos perceber que a equação é o resultado do produto da diferença de dois quadrados. Assim:
[tex]x^2-9=x^2-3^2=(x+3)(x-3)[/tex]
Agora podemos voltar pro limite e simplificar a expressão:
[tex] \lim_{x \to 3} \frac{x^2-8x+15}{x^2-9} [/tex]
[tex] \lim_{x \to 3} \frac{(x-5)(x-3)}{(x+3)(x-3)} [/tex]
[tex] \lim_{x \to 3} \frac{(x-5).1}{(x+3).1} [/tex]
[tex] \lim_{x \to 3} \frac{(x-5)}{(x+3)} [/tex]
Então quando x tender para 3 o limite da expressão tenderá para [/tex]\frac{-1}{3}[/tex], desta forma:
[tex] \lim_{x \to 3} \frac{(x-5)}{(x+3)}=\frac{(3-5)}{(3+3)}=\frac{-2}{6}=\frac{-1}{3}[/tex]
Para resolver tal questão devemos procurar simplificar primeiramente encontrando as raízes da equação no numerador e do denominador. Assim:
[tex] x^2-8x+15=0 [/tex]
Vamos resolver usando a fórmula de Báskara, onde:
[tex]x=\frac{-b \pm \sqrt{Delta}}{2a}[/tex]
[tex]Delta=b^2-4ac=(-8)^2-4.1.15=64-60=4[/tex]
[tex]x_1=\frac{-(-8)+\sqrt{4}}{2.1}[/tex]
[tex]x_1=\frac{8+2}{2}=\frac{10}{2}=5[/tex]
[tex]x_2=\frac{-(-8)-\sqrt{4}}{2.1}[/tex]
[tex]x_2=\frac{8-2}{2}=\frac{6}{2}=3[/tex]
Sabendo as raízes podemos reescrever a equação assim:
[tex] x^2-8x+15=(x-5)(x-3)[/tex]
Vamos fazer a mesma coisa com a equação do denominador, mas neste caso podemos usar um método diferente, pois podemos perceber que a equação é o resultado do produto da diferença de dois quadrados. Assim:
[tex]x^2-9=x^2-3^2=(x+3)(x-3)[/tex]
Agora podemos voltar pro limite e simplificar a expressão:
[tex] \lim_{x \to 3} \frac{x^2-8x+15}{x^2-9} [/tex]
[tex] \lim_{x \to 3} \frac{(x-5)(x-3)}{(x+3)(x-3)} [/tex]
[tex] \lim_{x \to 3} \frac{(x-5).1}{(x+3).1} [/tex]
[tex] \lim_{x \to 3} \frac{(x-5)}{(x+3)} [/tex]
Então quando x tender para 3 o limite da expressão tenderá para [/tex]\frac{-1}{3}[/tex], desta forma:
[tex] \lim_{x \to 3} \frac{(x-5)}{(x+3)}=\frac{(3-5)}{(3+3)}=\frac{-2}{6}=\frac{-1}{3}[/tex]
Agradecemos sua participação contínua. Não se esqueça de voltar para compartilhar suas perguntas e respostas. Seu conhecimento é inestimável para nós. Descubra as respostas que você precisa no IDNLearner.com. Obrigado pela visita e esperamos vê-lo novamente para mais soluções.