Obtenha soluções detalhadas no IDNLearner.com. Pergunte qualquer coisa e receba respostas informadas e detalhadas de nossa comunidade de profissionais especializados em diversas áreas do conhecimento.

(Fei)Uma urna contém 3 bolas numeradas de 1 a 3 e outra urna contém 5 bolas numeradas de 1 a 5. Ao retirar-se aleatoriamente uma bola de cada urna, a probabilidade da soma dos pontos ser maior do que 4 é:
a) 3/5
b) 2/5
c) 1/2
d) 1/3
e) 2/3


Sagot :

Resolução:

C3,2=3.2.1/2!

6/2=3

C5,4=5.4/4!

20/4=5


C= 3/5



Explicação passo-a-passo:

Se você tem 3 bolas e tira 1, terá 2 bolas, Sendo assim Será uma Combinação C3,2=3!/2!(3-2) e de 5 bolas tira 1, fica com 4 ou seja C5,4=5!/4!(5-4)...


OBS: Barrinha representando fração, divisão!! ( / )

A probabilidade da soma dos pontos ser maior do que 4 é 3/5.

A probabilidade é igual à razão entre o número de casos favoráveis e o número de casos possíveis.

O caso possível é retirar uma bola de cada urna e verificarmos a soma:

(1,1) → 1 + 1 = 2

(1,2) → 1 + 2 = 3

(1,3) → 1 + 3 = 4

(1,4) → 1 + 4 = 5

(1,5) → 1 + 5 = 6

(2,1) → 2 + 1 = 3

(2,2) → 2 + 2 = 4

(2,3) → 2 + 3 = 5

(2,4) → 2 + 4 = 6

(2,5) → 2 + 5 = 7

(3,1) → 3 + 1 = 4

(3,2) → 3 + 2 = 5

(3,3) → 3 + 3 = 6

(3,4) → 3 + 4 = 7

(3,5) → 3 + 5 = 8.

Então, o número de casos possíveis é igual a 15.

O caso favorável é a soma ser maior do que 4. Observando as somas acima, podemos concluir que em 9 casos a soma é maior que 4.

Logo, o número de casos favoráveis é igual a 9.

Portanto, a probabilidade é igual a:

P = 9/15

P = 3/5.

Para mais informações sobre probabilidade, acesse: https://brainly.com.br/tarefa/18253363

View image Silvageeh
Agradecemos sua participação contínua. Não se esqueça de voltar para compartilhar suas perguntas e respostas. Seu conhecimento é inestimável para nós. Encontre respostas claras e concisas no IDNLearner.com. Obrigado pela visita e volte para mais soluções confiáveis.