Conecte-se com especialistas no IDNLearner.com. Junte-se à nossa plataforma de perguntas e respostas para obter respostas rápidas e precisas para todas as suas perguntas importantes e resolver suas dúvidas.
Sagot :
Como o limite tende para [tex]+\infty[/tex], vamos substituir por valores positivos:
Para x = 10
[tex]\sqrt[3]{\frac{8+10^2}{10.(10+1)}}=\sqrt[3]{\frac{108}{110}}=\boxed{0,9939}[/tex]
Para x = 100
[tex]\sqrt[3]{\frac{8+100^2}{100.(100+1)}}=\sqrt[3]{\frac{10008}{10100}}=\boxed{0,9969}[/tex]
Perceba que na medida que aumentamos, o x tende a 1.
----------------------------
Lembre-se das relações trigonométricas:
[tex]cos^2(x)=\frac{1+cos(2x)}{2}[/tex]
Substituindo:
[tex]\int{\frac{1+cos(2x)}{2}}\, dx[/tex]
Resolvendo, temos:
[tex]\boxed{\frac{1}{2}[x+\frac{sen(2x)}{2}]+C}[/tex]
Qualquer dúvida, pode perguntar!
Resposta:
não sei
Explicação passo-a-passo:
tô no setimo ano ainda, to apenas em algebra
Sua participação ativa é essencial para nós. Continue fazendo perguntas e fornecendo respostas. Juntos, criamos uma comunidade vibrante de aprendizado. Encontre respostas claras no IDNLearner.com. Obrigado pela visita e volte para mais soluções confiáveis.