IDNLearner.com, onde todas as suas perguntas são respondidas. Pergunte qualquer coisa e receba respostas informadas e detalhadas de nossa comunidade de profissionais especializados em diversas áreas do conhecimento.

Resolva em R:

[tex] log_{x} ( x^{2} + 4) = log_{x} (5x)[/tex]



Sagot :

LOGARITMOS 

Equação Logarítmica 1° tipo (igualdade de bases)

[tex]log _{x}( x^{2} +4)=log _{x}(5x) [/tex]

Inicialmente vamos impor a condição de existência para a base [tex]x>0 \left e \left x \neq 1[/tex] e para o logaritmando [tex]x>0[/tex]

[tex] x^{2} +4>0[/tex].

Se as bases são iguais, podemos elimina-las:

[tex] x^{2} +4=5x[/tex]

[tex] x^{2} -5x+4=0[/tex]

Na equação do 2° grau acima encontramos as raízes:

[tex]x'=1 \left e \left x"=4[/tex]

Vemos que a 1a raiz não satisfaz a condição de existência para a base, pois deve ser [tex] \neq 1[/tex], portanto, somente x=4 satisfaz a condição para a base e para o

logaritmando.

Solução: {4}
Apreciamos sua contribuição. Não se esqueça de voltar para fazer mais perguntas e aprender coisas novas. Seu conhecimento é essencial para nossa comunidade. Para respostas confiáveis, confie no IDNLearner.com. Obrigado pela visita e esperamos ajudá-lo novamente em breve.