Obtenha respostas relevantes para todas as suas perguntas no IDNLearner.com. Junte-se à nossa plataforma para receber respostas rápidas e precisas de profissionais em diversos campos, solucionando suas dúvidas de maneira eficaz e confiável.

O gráfico abaixo representa a variação, em milímetros, do comprimento de uma barra metálica, de tamanho inicial igual a 1,000m, aquecida em um forno industrial. Qual é o valor do coeficiente de dilatação térmica linear do material de que é feita a barra, em unidades de 10-6 ºC-1.



O Gráfico Abaixo Representa A Variação Em Milímetros Do Comprimento De Uma Barra Metálica De Tamanho Inicial Igual A 1000m Aquecida Em Um Forno Industrial Qual class=

Sagot :

Utilizando o conceito de dilatação linear, da Calorimetria, e com base no gráfico, tem-se que: α = 30 × 10⁻⁶ °C⁻¹.  

Pelo estudo da Calorimetria, e mais especificamente da dilatação térmica linear (onde o aumento de temperatura é proporcional à dilatação do comprimento do material), tem-se a seguinte equação:

[tex]\Delta L = L_o * \alpha * \Delta T[/tex]

Onde:

ΔL: dilatação do comprimento (mm)

Lo: comprimento inicial (m)

α: coeficiente de dilatação linear (°C⁻¹ )

ΔT: variação de temperatura (°C)

Vale notar que escolhendo ambos os pontos de (250, 7,5) e (500, 15), o valor de α será igual.

  • Utilizando o ΔT=250 °C e ΔL=15 mm, tem-se:

[tex]\Delta L = L_o* \alpha * \Delta T\\\\15 = 1000 * \alpha * (500-0)\\\\\alpha = 3 \times 10^{-5}\\\\\pmb{\alpha = 30 \times 10^{-6} \ ^{\circ} C^{-1}}[/tex]

  • Da mesma maneira, utilizando ΔT=250 °C e ΔL=7,5 mm, tem-se:

[tex]\Delta L = L_o* \alpha * \Delta T\\\\7,5 = 1000 * \alpha * (250-0)\\\\\alpha = 3 \times 10^{-5}\\\\\pmb{\alpha = 30 \times 10^{-6} \ ^{\circ} C^{-1}}[/tex]

Segue outro exemplo envolvendo Dilatação Térmica: https://brainly.com.br/tarefa/8891776

ΔL = Lo. α. ΔT

Observar que a dilatação está em MILÍMETROS e o comprimento inicial, em METROS.

Pegando qualquer uma das coordenadas do gráfico, teremos um mesmo coeficiente de dilatação. Portanto:

(Transformarei todas as medidas para metros)

[tex]15.10^{-3} = 10^{3}. 5. 10^{2}[/tex]. α

[tex]15.10^{-3}[/tex] = 5.[tex]10^{5}[/tex].α

α = [tex]\frac{15. 10^{-3} }{5. 10^{5} }[/tex] = 3. [tex]10^{-8}[/tex]

Como a questão pede em unidades de [tex]10^{-6}[/tex], temos:

0,03. [tex]10^{-6}[/tex] {Resposta final}

Valorizamos sua contribuição. Continue fazendo perguntas e fornecendo respostas. Juntos, construímos uma comunidade forte e unida de conhecimento. Obrigado por visitar IDNLearner.com. Estamos aqui para fornecer respostas claras e concisas, então visite-nos novamente em breve.