Conecte-se com especialistas no IDNLearner.com. Descubra informações confiáveis sobre qualquer assunto graças à nossa rede de profissionais altamente qualificados.

Se log 2 = a e log 3 = b, calcule em função de a e b o valor de log3√1,08

Sagot :

[tex]\sqrt{a*b*c}=\sqrt{a}*\sqrt{b}*\sqrt{c} [/tex]
[tex]\sqrt[n]{a^{x}}=a^{x/n} [/tex]

[tex]log_{b}(a*c)=log_{b}(a)+log_{b}(c)[/tex]
[tex]log_{b}(a^{n})=n*log_{b}(a)[/tex]
__________________________

[tex]log_{3}\sqrt{1,08}=log_{3}\sqrt{108/100} [/tex]
[tex]log_{3}\sqrt{1,08}=log_{3}[(1/10)\sqrt{108}][/tex]
[tex]log_{3}\sqrt{1,08}=log_{3}[(1/10)\sqrt{4*9*3}][/tex]
[tex]log_{3}\sqrt{1,08}=log_{3}[(1/10)*2*3* \sqrt{3}][/tex]
[tex]log_{3}\sqrt{1,08}=log_{3}[10^{-1}*2*3*3^{1/2}][/tex]
[tex]log_{3}\sqrt{1,08}=log(10^{-1}*2*3*3^{1/2})/log(3)[/tex]
[tex]log_{3}\sqrt{1,08}=(log(10^{-1})+log(2)+log(3)+log(3)^{1/2})/b[/tex]
[tex]log_{3}\sqrt{1,08}=[[-1]*log(10)+a+b+(1/2)*log(3)]/b[/tex]
[tex]log_{3}\sqrt{1,08}=([-1]*1 + a + b + (1/2)b])/b[/tex]
[tex]log_{3}\sqrt{1,08}=(- 1 + a + b + [b / 2]))/b[/tex]
[tex]log_{3}\sqrt{1,08}=[(-2+2a+2b+b)/2]/b[/tex]
[tex]log_{3}\sqrt{1,08}=(2a+3b-2)/2b[/tex]