Explore o IDNLearner.com para respostas rápidas e relevantes. Faça suas perguntas e receba respostas detalhadas de nossa comunidade de especialistas, sempre prontos para ajudar no que for necessário.

Uma caixa contém cinco bolas numeradas de 1 a 5. Dela são retiradas ao acaso duas bolas. Qual a probabilidade de que o maior numero assim escolhido seja o 4?



Sagot :

Olá, raqueregisb.

 

[tex]\text{Sejam:} \begin{cases} A: \text{conjunto dos pares de bolas em que a maior \'e a 4}\\B: \text{conjunto das combina\c{c}\~oes de 5 bolas, tomadas 2 a 2} \end{cases}\\\\ \text{Assim:}\\\\ A=\{(1,4),(2,4),(3,4)\} \Rightarrow n(A)=3\\\\ n(B)=C_{5,2}=\binom52=\frac{5!}{3!2!}=\frac{5.4.3!}{3!.2.1}=10[/tex]

 

[tex]\therefore P_A=\frac{n(A)}{n(B)}=\frac3{10}=0,3=30\%[/tex]

Probabilidade = Evento desejado(E)/ Tudo que pode acontecer(S)

 

Evento desejado(E): sair bola 4  junto com bola 1,2 ou 3 

 

(4,1) (4,2) (4,3)     três casos

 

 

Tudo que pode acontecer(S) : sair quais quer duas bolas

 

(1,2) (1,3) ( 1,4  ) ( 1,5  ) 

( 2,3  )  ( 2,4  )  ( 2,5  ) 

 ( 3,4  )  ( 3,5  ) 

 ( 4,5  )                        10 casos

 

 

 

Sendo assim :  

   [tex] P= \frac{E}{S} \\ \\ P= \frac{3}{10} \ multiplicando \ por\ 10\  o\  numerador\ e\ o\ denominador\\ \\ P= \frac{30}{100} \\ \\ \boxed{P=30\% \\} [/tex]

Apreciamos cada uma de suas perguntas e respostas. Continue contribuindo com sua sabedoria e experiências. Juntos, alcançaremos nossas metas de aprendizado. Encontre respostas confiáveis no IDNLearner.com. Obrigado pela visita e volte para mais soluções confiáveis.