Obtenha respostas rápidas e confiáveis no IDNLearner.com. Junte-se à nossa comunidade de especialistas para encontrar as respostas que você precisa em qualquer tema ou problema que enfrentar.

uma pirâmide quadrangular regular tem todas as arestas iguais,sendoa área da base igual a 16cm2.qual é a sua altura?



Sagot :

Seja [tex]\text{a}[/tex] a medida das arestas da pirâmide quadrangular regular em análise.

Conforme o enunciado, temos:

[tex]\text{a}\cdot\text{a}=16 \ \text{cm}^2[/tex]

Donde, obtemos [tex]\text{a}=4 \ \text{cm}[/tex].

Logo, concluímos que a medida das arestas da pirâmide dada é igual a [tex]4 \text{cm}[/tex].

Segundo o enuciado, podemos afirmar que todas as arestas são iguais.

Desse modo, as faces triangulares da pirâmide são triângulos equiláteros, cujos lados medem [tex]4 \ \text{cm}[/tex].

Calculemos a altura de uma das faces triangulares, como segue:

A altura de um triângulo equilátero de lado [tex]\text{l}[/tex] é dada por [tex]\text{h}=\dfrac{\text{l}\sqrt{3}}{2}[/tex].

Contudo, a altura de uma das faces triangulares é [tex]\text{h}_1=\dfrac{4\sqrt{3}}{2}=2\sqrt{3} \ \text{cm}[/tex].

Tracemos o segmento [tex]\text{b}[/tex] com extremidades no vértice da pirâmide e no ponto médio da aresta da base.

É importante ressaltar que, [tex]\text{b}[/tex] é a altura de uma das faces laterais.

Analogamente, tracemos o segmento [tex]\text{h}[/tex] com extremidades no vértice da pirâmide e no centro da base.

Por inspeção, concluímos que [tex]\text{h}[/tex] é a altura da pirâmide quadrangular.

Por fim, tracemos o segmento [tex]\text{c}[/tex] com extremidades em [tex]\text{b}[/tex] e em [tex]\text{h}[/tex].

A medida de [tex]\text{c}[/tex] é dada por [tex]\dfrac{\text{a}}{2}[/tex], sendo [tex]\text{a}[/tex] a medida da aresta.

Assim, temos [tex]\text{c}=\dfrac{4}{2}=2 \ \text{cm}[/tex].

Desta maneira, obtemos um triângulo retângulo, com catetos [tex]\text{h}[/tex], [tex]\text{c}[/tex] e hipotenusa [tex]\text{b}[/tex].

Conforme o Teorema de Pitágoras, podemos afirmar que [tex]\text{b}^2=\text{h}^2+\text{c}^2[/tex], donde [tex]\text{h}=\sqrt{\text{b}^2-\text{c}^2}[/tex].

Como [tex]\text{b}=2\sqrt{3}~\wedge~\text{c}=2[/tex], segue que:

[tex]\text{h}=\sqrt{(2\sqrt{3})^2-2^2}=\sqrt{8}=2\sqrt{2} \ \text{cm}[/tex]

Logo, chegamos à conclusão de que a a altura da pirâmide dada é [tex]2\sqrt{2} \ \text{cm}[/tex].

View image Аноним