IDNLearner.com, sua plataforma para respostas detalhadas. Descubra informações confiáveis sobre qualquer tema graças à nossa rede de profissionais altamente qualificados em diversas áreas do conhecimento.

Equações biquadradas, questão de concurso, achar as raízes de x^4-11x^2+16=0 ?

Sagot :

[tex]x^{2} = y\\\\y^{2}-11y+16=0\\delta=121-4.1.16\\delta=121-64\\delta=57\\\\y1=\frac{11+\sqrt{57}}{2}\\y2=\frac{11-\sqrt{57}}{2}\\x^{2}=y(somentes para valores positivos de y)\\x1=\sqrt{\frac{11+\sqrt{57}}{2}}\\x2=-\sqrt{\frac{11+\sqrt{57}}{2}}[/tex]

Temos a equação:

 

[tex]\text{x}^4-11\text{x}^2+16=0[/tex]

 

[tex](\text{x}^2)^2-11\text{x}^2+16=0[/tex]

 

Façamos [tex]\text{x}^2=\text{y}[/tex]

 

Desta maneira, obtemos:

 

[tex]\text{y}^2-11\text{y}+16=0[/tex]

 

[tex]\text{y}=\dfrac{-(-11)\pm\sqrt{(-11)^2-4\cdot1\cdot16}}{2\cdot1}=\dfrac{11\pm\sqrt{57}}{2}[/tex]

 

[tex]\text{y}'=\dfrac{11+\sqrt{19\cdot3}}{2}[/tex]

 

[tex]\text{y}"=\dfrac{11-\sqrt{19\cdot3}}{2}[/tex]

 

Como [tex]\text{x}^2=\text{y}[/tex], podemos afirmar que:

 

[tex]\text{x}'=\pm\sqrt{\dfrac{11+\sqrt{19\cdot3}}{2}}[/tex]

 

[tex]\text{x}'=\pm\dfrac{\sqrt{11+\sqrt{19\cdot3}}}{\sqrt{2}}[/tex]

 

[tex]\text{x}'=\pm\dfrac{11\sqrt{2}+\sqrt{144}}{2}[/tex]

 

[tex]\text{x}'=\pm\dfrac{11\sqrt{2}+12}{2}[/tex]

 

[tex]\text{x}'=\pm\dfrac{11\sqrt{2}}{2}+6[/tex]

 

Analogamente, temos:

 

[tex]\text{x}''=\pm\sqrt{\dfrac{11-\sqrt{19\cdot3}}{2}}[/tex]

 

[tex]\text{x}''=\pm\dfrac{\sqrt{11-\sqrt{19\cdot3}}}{\sqrt{2}}[/tex]

 

[tex]\text{x}''=\pm\dfrac{11\sqrt{2}-\sqrt{144}}{2}[/tex]

 

[tex]\text{x}''=\pm\dfrac{11\sqrt{2}-12}{2}[/tex]

 

[tex]\text{x}''=\pm\dfrac{11\sqrt{2}}{2}-6[/tex]

 

Logo, as raízes da equação supracitada são:

 

[tex]\text{S}=\{\pm\dfrac{11\sqrt{2}}{2}+6[/tex] e [tex]\pm\dfrac{11\sqrt{2}}{2}-6\}[/tex]

Agradecemos sua participação constante. Não se esqueça de voltar para compartilhar suas perguntas e respostas. Seu conhecimento é vital para nossa comunidade. Obrigado por visitar IDNLearner.com. Estamos aqui para fornecer respostas precisas e confiáveis, então visite-nos novamente em breve.