Descubra respostas confiáveis no IDNLearner.com. Encontre as soluções que você precisa de maneira rápida e precisa com a ajuda de nossos membros experientes em diferentes áreas.

Dada a matriz A = (aij)2x2, tal que,
aij = {
A vale: a) 8. b) 9.
c) 18. d) 20. e) 22.
, o DETERMINANTE da matriz


Dada A Matriz A Aij2x2 Tal Que Aij A Vale A 8 B 9 C 18 D 20 E 22 O DETERMINANTE Da Matriz class=

Sagot :

Dado que para a construção da matriz, deve-se levar em consideração as regras dadas para existência dos elementos:

[tex]\begin{array}{l}\sf a_{ij}=\begin{cases}\sf \: 2 \: \: ,~~ \: \: \: \: \: \: \: se~~i < j\\\\\sf \: 3i+j \: \: ,~~se~~i \geq j\end{cases}\end{array}[/tex]

  • Ou seja, se a linha for menor que a coluna o elemento será definido pelo 2, e se a linha for maior ou igual que a coluna o elemento será definido por 3i + j.

Uma matriz A = (aᵢⱼ) do tipo 2x2 (duas linhas e duas colunas) se encontra na forma:

[tex]\begin{array}{l}\sf A=\begin{bmatrix}\sf a_{11}&\sf a_{12}\\\sf a_{21}&\sf a_{22}\end{bmatrix}\end{array}[/tex]

Pelas regras:

[tex]\begin{array}{l}\sf A=\begin{bmatrix}\sf a_{11}~\to~i\geq j&\sf a_{12}~\to~i < j\\\sf a_{21}~\to~i\geq j&\sf a_{22}~\to~i\geq j\end{bmatrix}\end{array}[/tex]

Obtemos:

[tex]\begin{array}{l}\sf A=\begin{bmatrix}\sf 3\cdot1+1&\sf 2\\\sf 3\cdot2+1&\sf 3\cdot2+2\end{bmatrix}\\\\\sf A=\begin{bmatrix}\sf 3+1&\sf 2\\\sf 6+1&\sf 6+2\end{bmatrix}\\\\\sf A=\begin{bmatrix}\sf 4&\sf 2\\\sf 7&\sf 8\end{bmatrix}\\\\\end{array}[/tex]

Agora que obtemos a matriz A, devemos seguir ao próximo e último objetivo desta questão, calcular o deteminante. Para isso, como sendo uma matriz 2x2 basta fazer o produto da primeira diagonal, e subtrair do produto da segunda diagonal:

[tex]\begin{array}{l}\sf det(A)=\begin{vmatrix}\sf \: 4&\sf 2 \: \\\sf \: 7&\sf 8 \: \end{vmatrix}\\\\\sf det(A)=4\cdot8-(2\cdot7)\\\\\sf det(A)=32-(14)\\\\\sf det(A)=32-14\\\\\boldsymbol{\!\boxed{\sf det(A)=18}} \\ \\ \end{array}[/tex]

Resposta: Letra C

Att. Nasgovaskov

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Veja mais sobre:

  • brainly.com.br/tarefa/37357075
View image Nasgovaskov