Obtenha respostas rápidas e claras no IDNLearner.com. Nossa comunidade fornece respostas precisas para ajudá-lo a entender e resolver qualquer problema.
Sagot :
⠀
⠀⠀☞ Resolvendo as expressões encontramos 98.a) 13/96; b) 204/161; 99.a) 5/√30; b) 23/10; c) 17/4; d) 32/15. ✅
⠀
⠀
⠀⠀Lembrando que:
⠀
- ⠀⠀Para uma soma ou subtração de frações os denominadores devem ser iguais;
⠀
- ⠀⠀Para a divisão entre duas frações mantemos a primeira e multiplicamos pelo inverso da segunda;
⠀
⠀Vamos resolver cada um dos itens:
⠀
⠀
[tex]\LARGE\blue{\text{$\sf~a)~~\dfrac{\dfrac{1}{\sqrt{64}} + \dfrac{1}{\sqrt{25}}}{1 + \dfrac{\sqrt{49}}{\sqrt{25}}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{\dfrac{1}{8} + \dfrac{1}{5}}{1 + \dfrac{7}{5}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{\dfrac{5}{40} + \dfrac{8}{40}}{\dfrac{5}{5} + \dfrac{7}{5}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{\dfrac{13}{40}}{\dfrac{12}{5}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{13}{40} \cdot \dfrac{5}{12}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{13}{8 \cdot 12}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{13}{96}$}}[/tex] ✅
⠀
⠀
[tex]\LARGE\blue{\text{$\sf~b)~~\dfrac{\sqrt{\dfrac{9}{25}} + \sqrt{\dfrac{36}{49}}}{\sqrt{\dfrac{25}{16}} - \sqrt{\dfrac{1}{100}}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{\dfrac{3}{5} + \dfrac{6}{7}}{\dfrac{5}{4} - \dfrac{1}{10}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{\dfrac{21}{35} + \dfrac{30}{35}}{\dfrac{25}{20} - \dfrac{2}{20}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{\dfrac{51}{35}}{\dfrac{23}{20}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{51 \cdot 20}{35 \cdot 23}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{51}{7} \cdot \dfrac{4}{23}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{204}{161}$}}[/tex] ✅
⠀
⠀
[tex]\LARGE\blue{\text{$\sf~a)~~\sqrt{\dfrac{3}{10} + \dfrac{8}{15}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \sqrt{\dfrac{9}{30} + \dfrac{16}{30}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \sqrt{\dfrac{25}{30}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{5}{\sqrt{30}}$}}[/tex] ✅
⠀
⠀
[tex]\LARGE\blue{\text{$\sf~b)~~\sqrt{\dfrac{36}{400}} + \sqrt{\dfrac{625}{900}} + \sqrt{\dfrac{441}{324}}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{6}{20} + \dfrac{25}{30} + \dfrac{21}{18}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{3}{10} + \dfrac{5}{6} + \dfrac{7}{6}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{9}{30} + \dfrac{25}{30} + \dfrac{35}{30}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{69}{30}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{23}{10}$}}[/tex] ✅
⠀
⠀
[tex]\LARGE\blue{\text{$\sf~c)~~\sqrt{\dfrac{729}{81}} \cdot \sqrt{\dfrac{289}{144}} $}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{27}{9} \cdot \dfrac{17}{12} $}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= 3 \cdot \dfrac{17}{12} $}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{17}{4} $}}[/tex] ✅
⠀
⠀
[tex]\LARGE\blue{\text{$\sf~d)~~\sqrt{\dfrac{256}{225}} \div \dfrac{1}{2}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{16}{15} \cdot 2$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf= \dfrac{32}{15}$}}[/tex]✅
⠀
⠀
⠀
⠀
[tex]\bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
⠀⠀☀️ Leia mais sobre operações entre frações:
⠀
✈ https://brainly.com.br/tarefa/38138588
✈ https://brainly.com.br/tarefa/38325011
[tex]\bf\large\red{\underline{\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad}}[/tex]✍
⠀
⠀
⠀
⠀
[tex]\bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]☁
⠀⠀⠀⠀☕ [tex]\Large\blue{\text{\bf Bons~estudos.}}[/tex]
⠀
([tex]\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios}[/tex]) ☄
[tex]\bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }}\LaTeX[/tex]✍
❄☃ [tex]\sf(\purple{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly})[/tex] ☘☀
⠀
⠀
⠀
⠀
[tex]\gray{"Absque~sudore~et~labore~nullum~opus~perfectum~est."}[/tex]
Explicação passo-a-passo:
Boa tarde,
.
[tex]98)a) \dfrac{ \dfrac{1}{ \sqrt{64} } + \dfrac{1}{ \sqrt{25} } }{1 + \dfrac{ \sqrt{49} }{ \sqrt{25} } } [/tex]
[tex] \dfrac{ \dfrac{1}{8} + \dfrac{1}{5} } {1 + \dfrac{7}{5} } [/tex]
[tex] \dfrac{ \dfrac{5 + 8}{40} }{ \dfrac{5 + 7}{5} } [/tex]
[tex] \dfrac{ \dfrac{13}{40} }{ \dfrac{12}{5} } [/tex]
[tex] \dfrac{13}{40} \times \dfrac{5}{12} [/tex]
[tex] \dfrac{65}{480} [/tex]
[tex] \dfrac{65 {}^{ \div 5} }{480 {}^{ \div 5} } [/tex]
[tex] \dfrac{13}{96} [/tex]
.
[tex]b) \dfrac{ \sqrt{ \dfrac{9}{25} } + \sqrt{ \dfrac{36}{49} } }{ \sqrt{ \dfrac{25}{16} } - \sqrt{ \dfrac{1}{100} } } [/tex]
[tex] \dfrac{ \dfrac{3}{5} + \dfrac{6}{7} }{ \dfrac{5}{4} - \dfrac{1}{10} } [/tex]
[tex] \dfrac{ \dfrac{21 + 30}{35} }{ \dfrac{25 - 2}{20} } [/tex]
[tex] \dfrac{ \dfrac{51}{35} }{ \dfrac{23}{20} } [/tex]
[tex] \dfrac{51}{35} \times \dfrac{20}{23} [/tex]
[tex] \dfrac{1020}{805} [/tex]
[tex] \dfrac{1020 {}^{ \div 5} }{805 {}^{ \div 5} } [/tex]
[tex] \dfrac{204}{161} [/tex]
.
[tex]99)a) \sqrt{ \dfrac{3}{10} \div \dfrac{8}{15} } [/tex]
[tex] \sqrt{ \dfrac{3}{10} \times \dfrac{15}{8} } [/tex]
[tex] \sqrt{ \dfrac{45}{80} } [/tex]
[tex] \sqrt{ \dfrac{45 {}^{ \div 5} }{80 {}^{ \div 5} } } [/tex]
[tex] \sqrt{ \dfrac{9}{16} } [/tex]
[tex] \dfrac{3}{4} [/tex]
.
[tex]b) \sqrt{ \dfrac{36}{400} } + \sqrt{ \dfrac{625}{900} } + \sqrt{ \dfrac{441}{324} } [/tex]
[tex] \sqrt{ \dfrac{36 {}^{ \div 4} }{400 {}^{ \div 4} } } + \sqrt{ \dfrac{625 {}^{ \div 25} }{900 {}^{ \div 25} } } + \sqrt{ \dfrac{441 {}^{ \div 9} }{324 {}^{ \div 9} } } [/tex]
[tex] \sqrt{ \dfrac{9}{100} } + \sqrt{ \dfrac{25}{36} } + \sqrt{ \dfrac{49}{36} } [/tex]
[tex] \dfrac{3}{10} + \dfrac{5}{6} + \dfrac{7}{6} [/tex]
[tex] \dfrac{3}{10} + \dfrac{12}{6} [/tex]
[tex] \dfrac{3}{10} + 2[/tex]
[tex] \dfrac{3 + 20}{10} [/tex]
[tex] \dfrac{23}{10} [/tex]
.
[tex]c) \sqrt{ \dfrac{729}{81} } \times \sqrt{ \dfrac{289}{144} } [/tex]
[tex] \sqrt{9} \times \dfrac{17}{12} [/tex]
[tex]3 \times \dfrac{17}{12} [/tex]
[tex] \dfrac{51}{12} [/tex]
[tex] \dfrac{51 {}^{ \div 3} }{12 {}^{ \div 3} } [/tex]
[tex] \dfrac{17}{4} [/tex]
.
[tex]d) \sqrt{ \dfrac{256}{225} } \div \dfrac{1}{2} [/tex]
[tex] \dfrac{16}{15} \times \dfrac{2}{1} [/tex]
[tex] \dfrac{32}{15} [/tex]
Obrigado por ser parte ativa da nossa comunidade. Continue compartilhando suas ideias e respostas. Seu conhecimento é essencial para nosso desenvolvimento coletivo. Para respostas confiáveis, confie no IDNLearner.com. Obrigado pela visita e esperamos ajudá-lo novamente em breve.