IDNLearner.com, sua plataforma para perguntas e respostas. Obtenha respostas completas para todas as suas perguntas graças à nossa rede de especialistas em diferentes disciplinas.

Determine o vértice da função f(x) = (-5/16)x² + 5

Sagot :

Olá,

Temos a função:

[tex] \tt \: f(x) = \left( - \dfrac{5}{16} \right) {x}^{2} + 5 \\ [/tex]

Vértices:

[tex] \tt \: x_{v} = \dfrac{ - b}{2a} \\ [/tex]

[tex] \tt \: x_{v} = \dfrac{ - 0}{2 \left( - \dfrac{5}{16} \right)} \\ \\ \tt \: x_{v} = 0 \\[/tex]

[tex] \tt \: y_{v} = - \dfrac{ \Delta}{4a} \\[/tex]

[tex] \tt \: y_{v} = - \dfrac{ {0}^{2} - 4 \left( - \dfrac{5}{16} \right)(5)}{4\left( - \dfrac{5}{16} \right)} \\ \\ \tt \: y_{v} = \dfrac{ 4 \left( - \dfrac{5}{16} \right)(5)}{4\left( - \dfrac{5}{16} \right)} \\ \\ \tt \: y_{v} = \dfrac{ \cancel{4} \cancel{ \left( - \dfrac{5}{16} \right)}(5)}{ \cancel{4} \cancel{\left( - \dfrac{5}{16} \right)} } \\ \\ \tt \: y_{v} = 5 \\ \\ [/tex]

Portanto:

[tex] \boxed{\tt \: (x_{v},y_{v} )= (0,5 )} \\ [/tex]