IDNLearner.com, onde suas perguntas encontram respostas confiáveis. Obtenha respostas completas para todas as suas perguntas graças à nossa rede de especialistas em diferentes disciplinas e áreas do conhecimento.
Sagot :
Resposta:
[tex]f_o \approx 1316{,}13 \text{ Hz} \text{ e } f_o \approx 1102{,}70\text{ Hz}\text{, respectivamente.}[/tex]
Explicação:
O tema central dessa questão é o Efeito Doppler, esse fenômeno acontece quando temos o movimento relativo entre a fonte (quem emite o som) e o ouvinte, esse efeito pode ser observado em corridas por exemplo, aonde a cada instante que o carro se aproxima, temos um som diferente, e quando ele passa e se distancia do ouvinte, notamos a diferença novamente, esse é o Efeito Doppler!
Temos o equacionamento para esse fenômeno, o mais importante aqui é prestar atenção nos sinais da equação:
[tex]\dfrac{f_o}{v_s\pm v_o} = \dfrac{f_f}{v_s\pm v_f}\\\\\\f_0 :\text{frequ\^encia recebida pelo ouvinte}\\f_f :\text{frequ\^encia da fonte}\\v_s :\text{velocidade do som}\\v_f :\text{velocidade da fonte}\\v_o :\text{velocidade do observador}\\[/tex]
Mas como determinar os sinais? Vamos ver!
- Primeiro caso, os triviais, se a fonte ou observador estiver parado
[tex]\displaystylev_f = 0\\v_o = 0\\[/tex]
[tex]\dfrac{f_o}{v_s} = \dfrac{f_f}{v_s \pm v_f} \text{ ou } \dfrac{f_o}{v_s \pm v_o} = \dfrac{f_f}{v_s}[/tex]
- Fonte está se aproximando do ouvinte
[tex]v_f \text{ negativa}\\\\\dfrac{f_o}{v_s\pm v_o} = \dfrac{f_f}{v_s - v_f}[/tex]
- Fonte está se afastando do ouvinte
[tex]v_f \text{ positiva}\\\\\dfrac{f_o}{v_s\pm v_o} = \dfrac{f_f}{v_s + v_f}[/tex]
- Ouvinte está se aproximando da fonte
[tex]v_o \text{ positiva}\\\\\dfrac{f_o}{v_s + v_o} = \dfrac{f_f}{v_s \pm v_f}[/tex]
- Ouvinte está se afastando da fonte
[tex]v_o \text{ negativa}\\\\\dfrac{f_o}{v_s - v_o} = \dfrac{f_f}{v_s \pm v_f}[/tex]
Pronto, agora sabemos como decidir os sinais, vamos fazer o exercício de fato, em ambos os casos, o ouvinte está parado, o que irá facilitar nossas contas!
1. Sirene se aproximando do ouvinte
Como a fonte se aproxima do ouvinte, e ele está parado, vamos utilizar a seguinte expressão:
[tex]\dfrac{f_o}{v_s} = \dfrac{f_f}{v_s - v_f}\longrightarrow f_o = f_f \dfrac{v_s}{v_s - v_f}[/tex]
Colocando os dados:
[tex]f_o = 1200\cdot \dfrac{340}{340 - 30}\\\\\\f_o = 1200\cdot \dfrac{340}{310}\\\\\\f_o \approx 1316{,}13 \text{ Hz}[/tex]
Portanto a frequência que o observador recebe é aproximamente 1316,13 Hz
2. Sirene se afastando do ouvinte
Como a fonte se afastando do ouvinte, e ele está parado, vamos utilizar a seguinte expressão:
[tex]\dfrac{f_o}{v_s} = \dfrac{f_f}{v_s + v_f}\longrightarrow f_o = f_f \dfrac{v_s}{v_s + v_f}[/tex]
Colocando os dados:
[tex]f_o = 1200\cdot \dfrac{340}{340 + 30}\\\\\\f_o = 1200\cdot \dfrac{340}{370}\\\\\\f_o \approx 1102{,}70\text{ Hz}[/tex]
Portanto a frequência que o observador recebe é aproximamente 1102,70 Hz
Pronto!
Espero ter ajudado, qualquer dúvida respondo nos comentários.
Valorizamos sua contribuição. Continue fazendo perguntas e fornecendo respostas. Juntos, construímos uma comunidade forte e unida de conhecimento. IDNLearner.com tem as soluções para suas perguntas. Obrigado pela visita e volte para mais informações úteis.