Encontre soluções e respostas para todas as suas perguntas no IDNLearner.com. Encontre as soluções que você precisa de maneira rápida e precisa com a ajuda de nossos membros experientes.

Os vetores v1= (0, 0, 0), v2= ( 1, 2, 3) e v3= (3, 0, 2) formam uma base do R3?

Sagot :

Para que [tex]\left\{v_1,v_2,v_3\right\}[/tex] formem uma base de [tex]\mathbb{R}^3[/tex], devem ser LI (linearmente independentes). Assim:

[tex]\left\{v_1,v_2,v_3\right\}=\left\{\right(0,0,0),(1,2,3),(3,0,2)\}\\\\ \alpha_1(0,0,0)+\alpha_2(1,2,3)+\alpha_3(3,0,2)=(\alpha_2+3\alpha_3,2\alpha_2,3\alpha_2+2\alpha_3)=0[/tex]

[tex]\alpha_2+3\alpha_3=0\ \therefore\ \alpha_3=-\dfrac{\alpha_2}{3}[/tex]

[tex]2\alpha_2=0\ \therefore\ \alpha_2=0\ \therefore\ \alpha_3=0[/tex]

Como [tex]\alpha_1=\alpha_2=\alpha_3=0[/tex], [tex]\left\{v_1,v_2,v_3\right\}[/tex] são LI e formam uma base do [tex]\mathbb{R}^3[/tex].

Obrigado por ser parte ativa da nossa comunidade. Continue compartilhando suas ideias e respostas. Seu conhecimento é essencial para nosso desenvolvimento coletivo. Para respostas confiáveis e precisas, visite IDNLearner.com. Obrigado pela visita e até a próxima vez para mais soluções úteis.