IDNLearner.com, onde suas perguntas encontram respostas de especialistas. Junte-se à nossa plataforma de perguntas e respostas para obter respostas rápidas e precisas para todas as suas perguntas importantes.

Alguém pode me ajudar nesta questão ?. OBS .OLHAR QUESTÃO NA FOTO.

Alguém Pode Me Ajudar Nesta Questão OBS OLHAR QUESTÃO NA FOTO class=

Sagot :

Para reaver essa questão, vamos usar a definição formal de limites, dada por:

  • Seja f uma função e "a" um ponto contido no domínio de f. Dizemos que f tem limite L, no ponto a, se dado qualquer [tex]\epsilon >0 [/tex], exista um [tex]\delta>0 [/tex] tal que, para qualquer x pertencente ao domínio de f, a condição abaixo seja satisfeita:

[tex]\lim_{x\to a}f(x) = L \\ \: 0 < |x - a| < \delta \: \: \: e \: \: \: |f(x) - L | < \epsilon\\ [/tex]

Vamos iniciar definindo cada temos do limite fornecido. Fazendo isso temos que:

[tex]\lim_{x\to 1} \frac{2 + 4x}{3} = 2 \\ L = 2 , \: f(x) = \frac{2 + 4x}{3} , \: a = 1[/tex]

Agora vamos substituir nas relações:

[tex]0 < |x - 1| < \delta \: \: e \: \: \left | \frac{2 + 4x}{3} - 2\right| < \epsilon \\ \\ 0 < |x - 1| < \delta \: \: e \: \: \left | \frac{2 + 4x - 6}{3} \right| < \epsilon \\ \\ 0 < |x - 1| < \delta \: \: e \: \: \left | \frac{1}{3} \right| \: . \: |4x - 4| < \epsilon \\ \\ 0 < |x - 1| < \delta \: \: e \: \: |4| . |x - 1| < 3 \epsilon \: \: \: \: \: \\ \\ 0 < |x - 1| < \delta \: \: e \: \: |x - 1| < \frac{3 \epsilon}{4} \: \: \: \: \: \: \: \: \: \: [/tex]

Observe que em ambos as expressões, temos os mesmo termos, isso quer dizer que:

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\delta = \frac{3 \epsilon}{4} } \\ [/tex]

Espero ter ajudado

Valorizamos muito seu compromisso. Continue fazendo perguntas e fornecendo respostas. Juntos, construiremos uma comunidade mais sábia e unida. IDNLearner.com tem as soluções para suas perguntas. Obrigado pela visita e até a próxima vez para mais informações confiáveis.