IDNLearner.com, seu guia para respostas confiáveis e rápidas. Obtenha guias passo a passo para todas as suas perguntas técnicas com a ajuda dos membros experientes de nossa comunidade.
Sagot :
A área do pentágono é igual a 19,50
Esta é uma questão sobre trigonometria, que é a parte da matemática que estuda as formas geométricas, perceba pelo desenho em anexo, que o pentágono dado pelo enunciado pode ser dividido em áreas menores, sendo elas: três triângulos retângulos e um quadrado.
Sabendo que a área de um triângulo retângulo é a multiplicação de seus catetos, dividido por 2, e que para encontrar a dimensão dos catetos podemos fazer uma subtração entre os números dos pontos de cada vértice, conforme anexo. Além disso o enunciado nos disse que a área de CDE é igual a 5, então partindo disso temos:
[tex]A cde = \dfrac{(b-1)\times (7-a)}{2} \\\\5= \dfrac{(a)\times (7-a)}{2} \\\\10 = 7a - a^2\\\\a = 5[/tex]
então b é:
[tex]b-a = 1\\\\b-5 = 1\\\\b=1+5\\\\b=6[/tex]
Com esses valores agora podemos encontrar as demais áreas que formam o pentágono:
[tex]Aaeh = \dfrac{(b-1-2)\times (3-a-3)}{2} = \dfrac{(6-1-2)\times (3-5-3)}{2} = \dfrac{3\times 5}{2} = 7,5[/tex]
[tex]Aaib = \dfrac{3\times 2}{2} = 3[/tex]
[tex]Aibhc = (a-3) \times 2 = (5-3) \times 2 = 2\times 2 =4[/tex]
Então a área total é:
[tex]A = 5+7,5+3+4=19,5[/tex]
Obrigado por seu compromisso constante. Continue compartilhando suas ideias e experiências. Sua participação nos ajuda a todos a aprender e crescer juntos. Suas perguntas são importantes para nós no IDNLearner.com. Obrigado pela visita e volte para mais soluções confiáveis.