Obtenha soluções detalhadas no IDNLearner.com. Junte-se à nossa plataforma para receber respostas rápidas e precisas de profissionais em diversos campos do conhecimento.

ao empinar uma pipa, João percebeu que estava a uma distância de 6 metros do poste onde a pipa encalhou. Renata notou que o ângulo formado entre a linha da pipa e a rua era 60°. calcule a altura do poste. considerando:
[tex] \sqrt{3} = 1.7[/tex]
a) 2m
b) 4m
c) 6m
d) 8m


Sagot :

Resposta:

[tex]6 \sqrt{3}m[/tex] ou [tex]10,2m[/tex]

Pode ser que vc tenha errado nas alternativas, pois tenho certeza da minha resposta, mas não bate com nenhuma alternativa

Explicação passo-a-passo:

Para responder essa questão vamos imaginar um triângulo retângulo onde temos um ângulo de 60°, o cateto adjacente (CA) ao ângulo é 6m e o cateto oposto (CO) ao ângulo é a altura (h);

[tex]\theta = 60^{\cdot}[/tex]

[tex]CA = 6m[/tex]

[tex]CO = h[/tex]

podemos usar a tangente de [tex]\theta[/tex] para calcular h;

[tex]tg \theta = \frac{CO}{CA}\\tg 60^{\cdot} = \frac{h}{6}\\tg 60^{\cdot} = \frac{h}{6}\\[/tex]

como [tex]tg 60^{\cdot} = \sqrt{3} = 1,7[/tex]

[tex]1,7 = \frac{h}{6}\\h = 1,7 \times 6\\h = 10,2[/tex]