IDNLearner.com, um espaço para conhecimento compartilhado. Junte-se à nossa plataforma para receber respostas rápidas e precisas de profissionais em diversos campos.

Seja a matriz .                                   Sabendo se que

 -1        c         0                                    At = A, calcule o determinante da matriz
  2        1       -1                                      A-A²+I²3 ,  sendo I3 a matriz identidade de
  a        b       -2                                         ordem 3.

 

 

a) –34 b) –67
c) –56 d) –76

 

 



Sagot :

 Condição I: a transposta (obtida trocando linha por coluna) da matriz A é igual a A, ou seja, [tex]A^t = A[/tex].

 

[tex]A^t = A \\\\ \begin{bmatrix} - 1 & 2 & a \\ c & 1 & b \\ 0 & - 1 & - 2 \end{bmatrix} = \begin{bmatrix} - 1 & c & 0 \\ 2 & 1 & - 1 \\ a & b & - 2 \end{bmatrix}[/tex]

 

 Da igualdade acima, podemos concluir que: [tex]\boxed{a = 0}[/tex], [tex]\boxed{b = - 1}[/tex] e [tex]\boxed{c = 2}[/tex]

 

 

 Calculemos agora A²:

 

[tex]\begin{bmatrix} - 1 & 2 & 0 \\ 2 & 1 & - 1 \\ 0 & - 1 & - 2 \end{bmatrix} \times \begin{bmatrix} - 1 & 2 & 0 \\ 2 & 1 & - 1 \\ 0 & - 1 & - 2 \end{bmatrix} = \\\\\\ \begin{bmatrix} (1 + 4 + 0) & (- 2 + 2 + 0) & (0 - 2 + 0) \\ (- 2 + 2 + 0) & (4 + 1 + 1) & (0 - 1 + 2) \\ (0 - 2 + 0) & (0 - 1 + 2) & (0 + 1 + 4) \end{bmatrix} = \\\\\\ \begin{bmatrix} 5 & 0 & - 2 \\ 0 & 6 & 1 \\ - 2 & 1 & 5 \end{bmatrix}[/tex]

 

 

 Calculemos agora [tex](I_3)^2[/tex]:

 

[tex]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}[/tex]

 

 Por fim,

 

[tex]A - A^2 + (I_3)^2 = \\\\ \begin{bmatrix} - 1 & 2 & 0 \\ 2 & 1 & - 1 \\ 0 & - 1 & - 2 \end{bmatrix} - \begin{bmatrix} 5 & 0 & - 2 \\ 0 & 6 & 1 \\ - 2 & 1 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \\\\\\ \begin{bmatrix} - 5 & 2 & 2 \\ 2 & - 4 & - 2 \\ 2 & - 2 & - 6 \end{bmatrix} = \\\\\\ \begin{bmatrix} - 5 & 2 & 2 & | & - 5 & 2 \\ 2 & - 4 & - 2 & | & 2 & - 4 \\ 2 & - 2 & - 6 & | & 2 & - 2 \end{bmatrix} = \\\\ - 120 - 8 - 8 + 16 + 20 + 24 = \\ \boxed{\boxed{- 76}}[/tex]

 

 

Agradecemos sua participação constante. Não se esqueça de voltar para compartilhar suas perguntas e respostas. Seu conhecimento é vital para nossa comunidade. Obrigado por visitar IDNLearner.com. Estamos aqui para fornecer respostas confiáveis, então visite-nos novamente em breve.