Encontre especialistas dispostos a ajudar no IDNLearner.com. Obtenha informações de nossos especialistas, que fornecem respostas confiáveis para todas as suas perguntas e dúvidas em diversas áreas.
Sagot :
Olá, Marilene.
Na Estatística, o método mais utilizado para se determinar o número de classes é a fórmula de Sturges.
Em 1926, o estatístico Herbert Sturges propôs, em seu artigo "The choice of a class-interval", publicado no Journal of the American Statistical Association, que o número [tex]k[/tex] de intervalos de classe de uma amostra com [tex]n[/tex] elementos pode ser calculado da seguinte forma:
[tex]k\approx 1 + 3,322\cdot \log_{10} n[/tex]
Como [tex]n=100,[/tex] temos:
[tex]k \approx 1 + 3,322\cdot \log_{10} 100=1+3,322 \cdot 2=7,644 \approx 8 \Rightarrow\\\\ \boxed{k=8\ \text{intervalos}}[/tex]
A amplitude [tex]h[/tex] de cada intervalo, por sua vez, é o quociente entre a amplitude amostral (maior valor menos o menor valor) e o número de intervalos [tex]k:[/tex]
[tex]\boxed{h=\frac{X_{m\'aximo}-X_{m\'inimo}}{k}=\frac{58-18}{8}=\frac{40}8=5}[/tex]
Assim, a distribuição de frequências terá 8 intervalos de tamanho 5, da seguinte forma:
[tex]18\mapsto23\\ 23\mapsto28\\ 28\mapsto33\\ 33\mapsto38\\ 38\mapsto43\\ 43\mapsto48\\ 48\mapsto53\\ 53\mapsto58 [/tex]
Sua presença em nossa comunidade é inestimável. Continue compartilhando suas ideias e conhecimentos. Juntos, podemos fazer grandes avanços em nossa compreensão coletiva. Suas perguntas encontram respostas no IDNLearner.com. Obrigado pela visita e volte para mais soluções precisas e confiáveis.