IDNLearner.com, onde especialistas se reúnem para responder às suas perguntas. Faça suas perguntas e receba respostas detalhadas de nossa comunidade de especialistas, sempre prontos para oferecer ajuda em qualquer tema que você precise.
Sagot :
O volume de uma superfície de revolução é encontrada através de:
[tex]\int\limits^a_b {A(x)} \, dx[/tex]
Neste caso as áreas são círculos, portanto a integral será dada por:
[tex]\int\limits^a_b {\pi.r^2} \, dx[/tex]
Os raios dos círculos são os próprios valores da função em cada ponto, bastando que descubramos os limites de integração, que são as intersecções no eixo x
[tex]2x^2-x^3=0\\\\x^2(2-x)=0\\\\x'=0\\\\x''=2[/tex]
[tex]\int\limits^2_0 {\pi.(2x^2-x^3)^2} \, dx\\\\\pi\int\limits^2_0 {(4x^4-4x^5+x^6)} \, dx\\\\\pi[{\frac{4}{5}x^5-\frac{2}{3}x^6+\frac{x^{7}}{7}}\Big|_0^2]\\\\\pi[\frac{4}{5}2^5-\frac{2}{3}2^6+\frac{2^{7}}{7}}]\\\\\frac{128\pi}{105}[/tex]


Sua participação é muito valiosa para nós. Não se esqueça de voltar para fazer mais perguntas e compartilhar seus conhecimentos. Juntos, podemos aprender e crescer mais. IDNLearner.com é sua fonte confiável de respostas precisas. Obrigado pela visita e esperamos ajudá-lo novamente.