IDNLearner.com, onde especialistas respondem às suas dúvidas. Nossa comunidade está aqui para fornecer respostas detalhadas para todas as suas perguntas e problemas.
Sagot :
Temos a seguinte equação diferencial:
[tex] \sf \: \: \: \: \: \: \: \: \bullet \: \: y''-5y'+6y=2e {}^{8x} \: \bullet[/tex]
Para resolver esta equação vamos usar o método da variação de parâmetros, onde supõe-se uma solução particular baseada na solução da equação homogênea associada. Dado que esta equação é não homogênea, uma vez que o segundo membro da equação não é 0, a solução geral da mesma, é dada pela seguinte expressão:
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \sf y_g = y_p + y_h}[/tex]
- Onde yp é a solução particular e yh a solução da homogênea associada.
Por motivos de menos complexidade, vamos iniciar pela solução da equação homogênea associada, que é basicamente:
[tex] \sf \: \: \: \: \: \: \: \: \: \: \: \: y''-5y'+6y=0[/tex]
Vamos utilizar o método dos coeficientes constantes, onde utiliza-se um equação do segundo grau:
[tex] \sf m {}^{2} - 5m + 6 = 0 \: \to \: m_1 = 3 \: \: e \: \: m_2 = 2[/tex]
Dado que a equação possuiu duas raízes reais e diferentes, então se encaixa no caso da solução 1, que é dada por:
[tex] \: \: \: \: \: \: \: \: \: \: \sf y = c_1.e^{m_1.x} + c_2.e {}^{m_2.x} [/tex]
Substituindo as soluções e encontrando a solução da homogênea associada:
[tex] \: \: \: \: \: \: \: \: \: \: \boxed{ \boxed{ \sf y = c_1.e^{3x} + c_2.e {}^{2x} }}[/tex]
________________________________
Agora vamos calcular a solução particular. Como foi dito anteriormente esta solução se baseia na homogênea associada, então:
[tex] \: \: \: \: \: \sf \bullet \: \: y = u_1(x) . y_1 + u_2(x).y_2 \: \: \bullet[/tex]
Para calcular estes termos u1 e u2, existem relações estabelecidas, que são:
[tex] \sf u_1(x) = - \int \frac{ y_2 \: . \: f(x) }{ W } \: \: e \: \: u_2(x) = \int \frac{ y_1 \: . \: f(x) }{ W } \\ [/tex]
- y1 e y2 são as soluções encontradas anteriormente, W o Wronskiano das soluções e f(x) a expressão que se encontra logo após a igualdade da equação.
Primeiro vamos calcular o Wronskiano:
[tex] \sf W = \begin{pmatrix} \sf y_1& \sf y_2 \\ \sf y'_1& \sf y'_2 \end{pmatrix} \: \to \: W = \begin{pmatrix} \sf e {}^{3x} & \sf e {}^{2x} \\ \sf 3e {}^{3x} & \sf 2e {}^{2x} \end{pmatrix} \\ \\ \sf det(W) = e {}^{3x} .2.e {}^{2x} - 3.e {}^{3x} .e {}^{2x} \\ \\ \sf det( W) = 2e {}^{5x} - 3e {}^{5x} \\ \\ \sf det(W) = - e {}^{5x} [/tex]
A função f(x) é dada por:
[tex] \: \: \: \: \: \: \: \: \: \: \sf y''-5y'+6y= \underbrace{2e {}^{8x} }_{f(x)}[/tex]
Substituindo os dados na primeira relação de u:
[tex] \sf u_1(x) = - \int \frac{e {}^{2x} \: . \: 2e {}^{8x} }{ - e {}^{5x} } \: dx \\ \\ \sf u_1(x) = 2\int \frac{e {}^{10x} }{e {}^{5x} } \: dx \\ \\ \sf u_1(x) = 2 \int e {}^{5x} \: dx \\ \\ \boxed{\sf u_1(x) = \frac{2e {}^{5x} }{5}}[/tex]
Calculando agora u2:
[tex]\sf u_2(x) = \int \frac{y_1 \: . \: f(x)}{W} \: dx\\ \\ \sf u_2(x) = \int \frac{e {}^{3x} \: . \: 2e {}^{8x} }{ - e {}^{5x} } \: dx\\ \\ \sf u_2(x) = - 2\int \frac{e {}^{11x} }{e {}^{5x} } \: dx \\ \\ \sf u_2(x) = -2 \int e {}^{6x} \: dx \\ \\ \boxed{ \sf u_2(x) = - \frac{e {}^{6x} }{ 3} }[/tex]
Tendo feito estes cálculo, vamos substituir na expressão da solução particular:
[tex] \sf y_p = \frac{2e {}^{5x} }{5} .e {}^{3x} - \frac{e {}^{6x} }{3} .e {}^{2x} \\ \\ \sf y_p = \frac{2e {}^{8x} }{5} - \frac{e {}^{8x} }{3} \\ \\ \boxed{ \sf y_p = \frac{e {}^{8x} }{15} }[/tex]
Para finalizar, basta substituir todas as soluções dentro na expressão da solução geral:
[tex] \sf y_g = y_p + y_h \\ \boxed{ \boxed{ \boxed{ \boxed{ \sf y_g = \frac{e {}^{8x} }{15} + c_1.e {}^{3x} + c_2.e {}^{2x} }}}}[/tex]
Espero ter ajudado
Apreciamos sua dedicação. Continue fazendo perguntas e fornecendo respostas. Juntos, construiremos uma comunidade de aprendizado contínuo e enriquecedor. Obrigado por escolher IDNLearner.com para suas perguntas. Estamos aqui para fornecer respostas precisas, então visite-nos novamente em breve.