Descubra respostas confiáveis no IDNLearner.com. Pergunte qualquer coisa e receba respostas completas e precisas de nossa comunidade de profissionais especializados em diversos temas.

determine o valor do x nos casos

me ajuda genteeee por favor ​


Determine O Valor Do X Nos Casosme Ajuda Genteeee Por Favor class=

Sagot :

[tex]\large\boxed{\begin{array}{l}\underline{\sf Observe\,a\,figura\,que\,anexei}\\\sf 1)\\\rm a)~ (x+1)^2=5^2+x^2\\\rm x^2+2x+1=25+x^2\\\rm \diagup\!\!\!\!x^2-\diagup\!\!\!\!x^2+2x=25-1\\\rm 2x=24\\\rm x=\dfrac{24}{2}\\\\\rm x=12\\\rm b)~ (x+1)^2= x^2+7^2\\\rm x^2+2x+1= x^2+49\\\rm x^2-x^2+2x=49-1\\\rm 2x=48\\\rm x=\dfrac{48}{2}\\\\\rm x=24\\\rm c)~x^2+(x+1)^2=29^2\\\rm x^2+x^2+2x+1=841\\\rm 2x^2+2x+1-841=0\\\rm 2x^2+2x-840=0\div(2)\\\rm x^2+x-420=0\end{array}}[/tex]

[tex]\large\boxed{\begin{array}{l}\rm x^2+x-420=0\\\rm\Delta=b^2-4ac\\\rm\Delta=1^2-4\cdot1\cdot(-420)\\\rm\Delta=1+1680\\\rm\Delta=1681\\\rm x=\dfrac{-b\pm\sqrt{\Delta}}{2a}\\\\\rm x=\dfrac{-1\pm\sqrt{1681}}{2\cdot1}\\\\\rm x=\dfrac{-1\pm41}{2}\begin{cases}\boxed{\rm x_1=\dfrac{-1+41}{2}=\dfrac{40}{2}=20}\\\\\rm x_2=\dfrac{-1-41}{2}=-\dfrac{42}{2}=-21\,(\tilde n~serve)\end{cases}\end{array}}[/tex]

[tex]\large\boxed{\begin{array}{l}\rm d)~(x+2)^2= x^2+6^2\\\rm x^2+4x+4=x^2+36\\\rm x^2-x^2+4x=36-4\\\rm 4x=32\\\rm x=\dfrac{32}{4}\\\\\rm x=8\end{array}}[/tex]

                                    //                                

[tex]\large\boxed{\begin{array}{l}\sf 2)\\\rm a)~y^2= 8^2+4^2\\\rm y^2=64+16\\\rm y^2=80\\\rm x^2= 6^2+y^2\\\rm x^2=36+80\\\rm x^2=116\\\rm x=\sqrt{116}=\sqrt{4\cdot29}\\\rm x=2\sqrt{29}\\\\\rm b)~ y^2= 6^2+4^2\\\rm y^2=36+16\\\rm y^2=52\\\rm z^2=y^2+ 3^2\\\rm z^2=52+9\\\rm z^2=61\\\rm x^2= z^2+ (2\sqrt{5})^2\\\rm x^2=61+20\\\rm x^2=81\\\rm x=\sqrt{81}\\\rm x=9\end{array}}[/tex]

[tex]\large\boxed{\begin{array}{l}\sf 3)\\\rm a)~ x^2+9^2=15^2\\\rm x^2+81=225\\\rm x^2=225-81\\\rm x^2=144\\\rm x=\sqrt{144}\\\rm x=12\\\\\rm b)\\\rm x^2+5^2=10^2\\\rm x^2+25=100\\\rm x^2=100-25\\\rm x^2=75\\\rm x=\sqrt{75}=\sqrt{25\cdot3}\\\rm x=5\sqrt{3} \end{array}}[/tex]

View image CyberKirito