IDNLearner.com, o lugar para obter respostas claras. Descubra soluções detalhadas para suas perguntas graças à vasta experiência de nossa comunidade de especialistas em diferentes áreas do conhecimento.
Sagot :
Para se estudar op sinal de uma função quadrática temos que levar em conta o seguinte:
Se a função tem duas raizes reais e distintas (Se delta > 0) então os sinais serão:
Se a>0:
A função será negativa no intervalo entre as raizes
A função será positiva nos intervaloes fora das raizes
Se a<0
A função será positiva no intervalo entre as raizes
A função será negativa nos intervaloes fora das raizes
Então precisamos determinar o valor de delta e das raizes:
[tex]\Delta = (-6)^2-4\cdot1\cdot8=4[/tex]
Usando a fórmula de Bháskara:
[tex]x=\frac{6+-\sqrt{4}}{2\cdot1}=\frac{6+-2}{2}[/tex]
Então as raizes são 2 e 4
Como delta>0 e a>0 temos:
A função será negativa no intervalo entre as raizes. A solução da inequação é:
S=[tex]S=\{2<x<4\}< var="">[/tex]
[tex]x^2 - 6x + 8 < 0 \\ x^2 - 2x - 4x + 8 < 0 \\ x(x - 2) - 4(x - 2) < 0 \\ (x - 4)(x - 2) < 0[/tex]
Estudando os sinais, uma vez que já conhecemos as raízes!!
____+_____(2)____-_____(4)____+_______
Note que o sinal da desigualdade é menor, e, devemos associá-lo a menos. Com efeito,
[tex]\boxed{S = \left \{ x \in \mathbb{N} / 2 < x < 4 \right \}}[/tex]
Obs.: a única solução é x = 3.
Obrigado por seu compromisso com nossa comunidade. Continue compartilhando suas ideias e experiências. Sua participação nos ajuda a todos a aprender e crescer. IDNLearner.com tem as soluções para suas perguntas. Obrigado pela visita e volte para mais informações úteis.