IDNLearner.com, onde suas perguntas encontram respostas de especialistas. Não importa a complexidade de suas perguntas, nossa comunidade tem as respostas que você precisa para avançar e tomar decisões informadas.

Um carrossel circular, localizado em determinado parque, possui, em seu interior, outro

carrossel circular concêntrico. O raio de cada um é, respectivamente, 5 m e 3 m. Sabendo que os dois

brinquedos possuem o mesmo ponto de embarque, considerando uma pessoa embarcando em cada

um desses brinquedos e, ainda, que um deles completa uma volta em 40 segundos e o outro, em 50

segundos, responda às perguntas abaixo:

a) Em quanto tempo as pessoas que embarcaram juntas estarão novamente juntas no ponto de

embarque?

b) No momento em que estiverem novamente juntas, no ponto de embarque, que distância terá

percorrido cada pessoa?.


Sagot :

Resposta:

Explicação passo a passo:

Questão sobre m.m.c

Cálculo do m.m.c (40, 50)

40, 50 | 2

20, 25 | 2

10, 25 | 2

5, 25 | 5

1, 5 | 5

1, 1 |

Assim, m.m.c (40, 50) = 2.2.2.5.5 = 200

a) Portanto, as pessoas estarão juntas novamente no ponto de embarque após 200 segundos

b)

i) Cada volta do carrossel menor é igual a C1 = 2π.r1 = 2.3,14.3 = 18,84 m

Assim, em

40s ------- 18,84m

200s ------ xm

40x = 200.18,84

x = 200.18,84/40

x = 5.18,84

x = 94,2 m

ii) Cada volta do carrossel maior é igual a C2 = 2π.r2 = 2.3,14.5 = 31,4 m

Assim, em

50s ---------- 31,4m

200s -------- xm

50x = 200.31,4

x = 200.31,4/50

x = 4.31,4

x = 125,6 m

Portanto, a pessoa do carrossel menor terá percorrido 94,2 metros e a pessoa do carrossel maior terá percorrido 125,6 metros

Agradecemos sua participação constante. Não se esqueça de voltar para compartilhar suas perguntas e respostas. Seu conhecimento é vital para nossa comunidade. Encontre soluções precisas no IDNLearner.com. Obrigado por confiar em nós com suas perguntas, e esperamos vê-lo novamente.