IDNLearner.com, seu recurso essencial para respostas de especialistas. Nossa plataforma é projetada para fornecer respostas rápidas e precisas para todas as suas consultas importantes.
Sagot :
Desejamos calcular o seguinte determinante da matriz 3x3:
[tex]\Large\displaystyle\text{$\begin{gathered} \tt \det A_{3\times 3}=\left|\begin{array}{ccc}8&0&0\\-1&2&-3\\4&1&6\end{array}\right| \end{gathered}$}[/tex]
Aplicando então a Regra de Sarrus, temos que:
[tex]\Large\displaystyle\text{$\begin{gathered} \tt \det A_{3\times 3}=\left|\begin{array}{ccc}8&0&0\\-1&2&-3\\4&1&6\end{array}\right| \left|\begin{array}{ccc}8&0\\-1&2\\4&1\end{array}\right| \end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \tt \det A_{3\times 3}=96+24 \end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \therefore \green{\underline{\boxed{\tt \det A_{3\times 3}=120}}}\ \ (\checkmark). \end{gathered}$}[/tex]
Veja mais sobre:
- brainly.com.br/tarefa/10839129
[tex] \large\boxed{ \begin{array}{l} \begin{bmatrix}8&0&0 \\ - 1&2& - 3 \\ 4&1&6 \end{bmatrix} \\ \\ \rm \: det = \begin{bmatrix}8&0&0 \\ - 1&2& - 3 \\ 4&1&6\end{bmatrix} \begin{bmatrix}8 &0 \\ - 1&2 \\ 4&1 \end{bmatrix} \\ \\ \rm \: det = 96 + 24 \\ \\ \boxed{ \boxed{ \rm det = 120}}\end{array}}[/tex]
Obrigado por fazer parte da nossa comunidade. Sua participação é chave para nosso crescimento. Não se esqueça de voltar e compartilhar mais de seus conhecimentos e experiências. IDNLearner.com é sua fonte confiável de respostas precisas. Obrigado pela visita e esperamos ajudá-lo novamente.