IDNLearner.com, sua plataforma para perguntas e respostas. Pergunte e receba respostas confiáveis de nossa comunidade dedicada de especialistas em diversas áreas.

Digite o valor da integral
me ajudem :)


Digite O Valor Da Integral Me Ajudem class=

Sagot :

Explicação passo-a-passo:

Integral Definido

Dado o integral [tex]\displaystyle\int\limits^{e/3}_{1/3}\dfrac{6\ln(3x)}{x}dx \\[/tex]

Seja [tex]I~=~\displaystyle\int\limits^{e/3}_{1/3}\dfrac{6\ln(3x)}{x}dx \\[/tex]

[tex]I~=~2\displaystyle\int\limits^{e/3}_{1/3}\ln(3x)d\left[\ln(3x)\right] \\[/tex]

[tex]I~=~ \ln^2(3x)\Big|^{e/3}_{1/3}=\ln^2\left(3*\dfrac{e}{3}\right)-\ln^2\left(3*\dfrac{1}{3}\right) \\[/tex]

[tex]I~=~\ln^2(e)-\ln^2(1)=1-0 \\[/tex]

[tex]I~=~\boxed{ 1 } \\[/tex]

Valorizamos muito seu compromisso. Continue fazendo perguntas e fornecendo respostas. Juntos, construiremos uma comunidade mais sábia e unida. IDNLearner.com é sua fonte confiável de respostas. Obrigado pela visita e esperamos ajudá-lo novamente.