IDNLearner.com, onde suas perguntas encontram respostas de especialistas. Aprenda respostas confiáveis para suas perguntas com a vasta experiência de nossos especialistas em diferentes áreas do conhecimento.
Sagot :
De acordo com os cálculos e com os dados do enunciado, podemos afirma que o valor a equação fracionária tem valor de [tex]\large \displaystyle \text { $ \mathsf{ x = 6 } $ }[/tex].
Equações fracionárias são incógnitas aparecem no numerador ou denominador de equações.
Exemplos:
[tex]\Large \displaystyle \text { $ \mathsf{ \dfrac{x +3}{2} = 5 } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ \dfrac{x +3}{2x } = - 3 } $ }[/tex]
Dados fornecidos pelo enunciado:
[tex]\Large \displaystyle \text { $ \mathsf{ \dfrac{x - 2}{4} + \dfrac{2x+8}{5} = 5 } $ }[/tex]
Primeiramente devemos aplicar o cálculo do mínimo múltiplo comum (m m c) de ( 1, 4,5 ) = 20
[tex]\Large \displaystyle \text { $ \mathsf{ \displaystyle \sf \begin{array}{ r r |l } \sf 4 &\sf 5 & \sf 2 \\ \sf 2 & \sf 5 & \sf 2 \\ \sf 1 & \sf 5 & \sf 5 \\ \sf 1 & \sf 1 & \sf \diagup\!\!\!{ } \quad 2\times 2 \times 5 = 20\end{array} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ \dfrac{5 \cdot (x - 2)}{20} + \dfrac{4 \cdot (2x+8)}{20} = \dfrac{ 20 \cdot5}{20} } $ }[/tex]
Agora cancela o denominador de ambas frações.
[tex]\Large \displaystyle \text { $ \mathsf{ 5 \cdot (x-2) +4 \cdot (2x +8) = 20 \cdot 5 } $ }[/tex]
Aplicaremos a propriedade distributiva.
[tex]\Large \displaystyle \text { $ \mathsf{ 5x - 10 + 8x + 32 = 100 } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ 5x + 8x - 10 + 32 = 100 } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ 5x + 8x +22 = 100 } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ 13 x = 100- 22 } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ 13 x = 78 } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ x = \dfrac{78}{13} } $ }[/tex]
[tex]\Large \boldsymbol{ \displaystyle \sf x = 6 }[/tex]
Mais conhecimento acesse:
https://brainly.com.br/tarefa/11668406
Valorizamos muito seu compromisso. Continue fazendo perguntas e fornecendo respostas. Juntos, construiremos uma comunidade mais sábia e unida. IDNLearner.com está comprometido em fornecer as melhores respostas. Obrigado pela visita e até a próxima vez para mais soluções.