Obtenha esclarecimentos rápidos no IDNLearner.com. Descubra respostas profundas para suas perguntas com a ajuda de nossa comunidade de profissionais qualificados.

Ao maximizar uma função contínua de uma única variável sem restrições, uma ferramenta essencial são as derivadas. Suponha que, para maximizar uma função f(x), o valor da variável de decisão deva ser x*=3.
Assinale a alternativa que contém as condições sobre as derivadas de f(x) que fazem com que o ponto x*=3 seja efetivamente um ponto de máximo.

Escolha uma:
a) f'(x)=3, f"(3)=0.
b) f'(3)=0, f"(3)<0.
c) f'(0)=3, f"(3)=0.
d) f'(3)>0, f"(x)=3.
e) f"(3)>0, f"(3)>0.


Sagot :

Explicação passo-a-passo:

Exemplo: f(x)=x², definida sobre [-1,2], possui x=0 como ponto crítico, pois f '(0)=0.

Se os pontos de extremos locais para f estiverem nas extremidades do domínio de f, as derivadas laterais de f poderão existir e ser não nulas. A função f(x)=1-x², definida sobre S=[-1,2] possui três extremos. x=-1 e x=2 são pontos de mínimo local e x=0 é um ponto de máximo local, mas f '(-1)=2 e f '(2)=-4.