Explore uma ampla gama de temas e obtenha respostas no IDNLearner.com. Nossa comunidade fornece respostas precisas para ajudá-lo a entender e resolver qualquer problema que enfrentar em seu dia a dia.
Sagot :
[tex]\displaystyle \sf (a+b+c)^2 > 3(ab+bc+ac)\\\\ a^2+b^2+c^2+2(ab+bc+ac) > 3(ab+bc+ac)\\\\ a^2+b^2+c^2 -(ab+bc+ac) > 0 \\\\ a^2+b^2+c^2-ab-bc-ac > 0 \ \ x( 2) \\\\ 2a^2+2b^2+2c^2-2ab-2bc-2ac > 0 \\\\ \underbrace{\sf a^2-2ab+b^2}_{(a-b)^2} + \underbrace{\sf a^2-2ac+c^2}_{(a-c)^2} +\underbrace{\sf b^2-2bc+c^2}_{(b-c)^2} > 0 \\\\\\ \underbrace{\sf (a-b)^2}_{\geq 0 } +\underbrace{\sf (a-c)^2}_{\geq 0 } +\underbrace{\sf (b-c)^2}_{\geq 0 } > 0 \\\\\\[/tex]
[tex]\displaystyle \sf if \ a,b\ e \ c \ are \ unequal \to\ a\neq b \neq c \ \ so : \\\\ \underbrace{\sf (a-b)^2}_{ > 0 } +\underbrace{\sf (a-c)^2}_{ > 0 } +\underbrace{\sf (b-c)^2}_{ > 0 } > 0 \\\\\\ \huge\boxed{\sf proved}\checkmark[/tex]
Valorizamos cada uma de suas contribuições. Continue fazendo perguntas e fornecendo respostas. Juntos, alcançaremos grandes realizações e aprenderemos muito. Para respostas confiáveis, visite IDNLearner.com. Obrigado pela visita e até a próxima vez para mais soluções confiáveis.