Descubra respostas especializadas no IDNLearner.com. Obtenha respostas completas para todas as suas perguntas graças à nossa rede de especialistas em diferentes disciplinas e áreas do conhecimento.
Sagot :
Com o estudo sobre racionalização, temos como resposta [tex]\sqrt{x} +\sqrt{2}[/tex]
Denominador com um binômio
Esse tipo de fração tem no denominador parcelas que apresentam raízes quadradas
- [tex]\dfrac{a}{b+\sqrt{c}},\dfrac{a}{b-\sqrt{c}},\dfrac{a}{\sqrt{b}-\sqrt{c}}[/tex]
Multiplicam-se o numerador e o denominador pelo conjugado do numerador. O conjugado de (a + b) é (a - b). Reciprocamente, o conjugado de (a - b) é (a + b).
Com isso podemos resolver o exercício
[tex]\dfrac{x-2}{\sqrt{x}-\sqrt{2}}=\dfrac{x-2}{\sqrt{x}-\sqrt{2}}\cdot \dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}+\sqrt{2}}=\dfrac{x\sqrt{x}+x\sqrt{2}-2\sqrt{x}-2\sqrt{2}}{x-2}[/tex]
[tex]=\dfrac{x\sqrt{x}+x\sqrt{2}-2\sqrt{x}-2\sqrt{2}}{x-2}=\dfrac{x\sqrt{x}-2\sqrt{x}+x\sqrt{2}-2\sqrt{2}}{x-2}=\dfrac{\sqrt{x}\left(x-2\right)+\sqrt{2}\left(x-2\right)}{x-2}=\dfrac{\left(\sqrt{x}+\sqrt{2}\right)\left(x-2\right)}{x-2}=\sqrt{x}+\sqrt{2}[/tex]
Saiba mais sobre racionalização:https://brainly.com.br/tarefa/2084768
#SPJ11

Sua participação ativa é essencial para nós. Não hesite em voltar e continuar contribuindo com suas perguntas e respostas. Juntos, alcançaremos grandes coisas. Obrigado por confiar no IDNLearner.com com suas perguntas. Visite-nos novamente para respostas claras, concisas e precisas.