Descubra um mundo de conhecimento e respostas comunitárias no IDNLearner.com. Encontre a informação que você precisa de maneira rápida e simples através de nossa plataforma de perguntas e respostas, precisa e abrangente.

Célia,
Sílvia, Luciani, Marcinéia e Scharley são
professores de Matemática. Cida, Carol, Ricardo, André
e Vanda são professores de Português. Na festa da
escola, serão escalados 3 professores de Matemática e
3 de Português para a organização do evento. O total de
combinações diferentes que esse cronograma de
trabalho da festa permite é igual a:
A) 100
B) 200
C) 300
D) 400
E) 500


Sagot :

✧ O total de combinações diferentes que esse cronograma de trabalho da festa permite é igual a 100.

✧ Para descobrirmos o total de combinações que esse cronograma permite, basta primeiro analisar o enunciado, e depois realizar os cálculos devidos.

  • Célia, Silvia, Luciani, Marcinéia e Scharley.. são professores de matemática.
  • Cida, Carol, Ricardo, André e Vanda... são professoras de português.

✧ Na festa da escola, 3 de cada serão escalados para organizar o evento, então faremos:

[tex] \bf{ \frac{5}{3} = \frac{5!}{3!(5 - 3)!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times (2 \times 1)} = \frac{120}{12} = 10 } \\ [/tex]

  • Vale tanto para os profs de matemática, quanto para os de português.

✧ Por fim, iremos multiplicar o resultado, que será 10 × 10, já que ambos resultam no mesmo.

[tex] \bf{10 \times 10 = 100}[/tex]

┐(´ー`)┌ Links interessantes ✧

  • https://brainly.com.br/tarefa/60793990
  • https://brainly.com.br/tarefa/60793998

[tex]\huge \boldsymbol{\star \: \red{Loh\:Moon}} \: \star[/tex]

View image QueenEvan