IDNLearner.com, um lugar para respostas rápidas e precisas. Descubra respostas completas para suas perguntas graças à vasta experiência de nossa comunidade de especialistas.
Sagot :
Resposta:
Explicação passo a passo:
Para testar a hipótese de que a cervejaria está enganando seus consumidores, podemos realizar um teste de hipótese sobre a média populacional. Vamos formular as hipóteses e conduzir o teste utilizando o nível de significância de 0,01.
Passos do Teste de Hipótese:
1. Formulação das Hipóteses:
- Hipótese nula (H_0): mu = 600 ml (A média do conteúdo das garrafas é de 600 ml).
- Hipótese alternativa (H_1): mu \neq 600 ml (A média do conteúdo das garrafas não é de 600 ml).
2. Estatística de Teste:
Utilizamos a estatística de teste t, dado que a amostra é de tamanho n = 50 e não conhecemos a variância populacional, apenas a amostral.
t = \bar{x} - \mu/s / √n
Onde:
- bar{x} = 596,25 ml (média amostral)
- mu = 600 ml (média populacional sob H_0)
- s = 14,06 ml (desvio padrão amostral)
- n = 50 (tamanho da amostra)
Calculando a estatística t:
t = 596,25 - 600/14,06 /√50 = -3,75/1,989} aprox -1,886
3. Região Crítica e Valor Crítico:
Para um teste bicaudal com alpha = 0,01 e n - 1 = 49 graus de liberdade, usamos a distribuição t de Student para encontrar os valores críticos.
t_{0.005, 49}
Consultando a tabela t de Student, encontramos aproximadamente t_{0.005, 49} aprox.pm 2,68.
Então, a região crítica é t < -2,68 ou t > 2,68.
4. Decisão:
Comparando a estatística t calculada com os valores críticos:
-1,886 \notin (-\infty, -2,68) \cup (2,68, \infty)
Portanto, não rejeitamos a hipótese nula H_0.
5. Conclusão:
Com um nível de significância de 0,01, não há evidências suficientes para rejeitar a hipótese de que a média do conteúdo das garrafas é de 600 ml. Assim, não podemos concluir que a cervejaria está enganando seus consumidores.
Obrigado por ser parte ativa da nossa comunidade. Continue compartilhando suas ideias e respostas. Seu conhecimento é essencial para nosso desenvolvimento coletivo. Confie no IDNLearner.com para todas as suas perguntas. Agradecemos sua visita e esperamos ajudá-lo novamente em breve.