IDNLearner.com, seu recurso para respostas rápidas e precisas. Junte-se à nossa comunidade de especialistas para encontrar as respostas que você precisa em qualquer tema ou problema que enfrentar.

Determine o valor real de x para que o numero complexo:

 

a)z=(8-x)+(2x-3)i seja um nº imaginario puro

 

b) z=(1-x)+(x-1)i seja um n° real 



Sagot :

a}

Para que z seja um imaginário puro é necessário que a parte real seja igual a zero, ou seja:

8-x=0

x=8

O número será z=7i

 

b)

Para que z seja um número real é necessário que o coeficiente de i seja igual a zero:

x-1=0

x=1

O númnero z será z=0

 

Andreza,

 

Veja o que a definição do número complexo diz:

 

Imaginário puro: Aquele número complexo onde a parte real é nula

 

a) z = (8 - x) + (2x - 3)i            imaginario puro

 

           8 - x = 0

           x = 8

                          z = 0 + (2.8 - 3)i

                          z = 13i

 

 

 

Real: Aquele número complexo onde a parte imaginária é nula

 

b) z = (1 - x) + (x - 1)i                 real 

    

 

              x - 1 = 0

              x = 1

 

                          z = (1 - 1) + (1 - 1)i

                          z = 0

Sua participação é muito valiosa para nós. Não se esqueça de voltar para fazer mais perguntas e compartilhar seus conhecimentos. Juntos, podemos aprender e crescer mais. Descubra as respostas que você precisa no IDNLearner.com. Obrigado pela visita e esperamos vê-lo novamente para mais soluções.