IDNLearner.com, onde a comunidade se une para resolver suas dúvidas. Nossos especialistas estão sempre dispostos a oferecer respostas profundas e soluções práticas para todas as suas perguntas e problemas.
Sagot :
Bom, para facilitar nosso cálculo, vamos passar todas as equações para a forma reduzida e depois compara-las.
coeficientes angulares e lineares iguais = paralelas coincidentes
coeficiente angular igual e linear diferente = paralelas distintas
coeficientes angulares e lineares diferentes = concorrentes
Lembrando que: na forma reduzida. coeficiente angular é o número acompanhado do x (m). E linear é o sozinho (q)
a) [tex](r) \ x-3y = 0 \\\ 3y = x \\\\ \boxed{y = \frac{1x}{3}} \\\\ m = \frac{1}{3} \ \ \ q = 0 \\\\\\ (s) \ \boxed{y = 3x} \\\\ m = 3 \ \ \ q = 0 \\\\ coeficiente \ angular: diferentes \\ coeficiente \ linear: diferentes \\\\\\ \boxed{\boxed{retas \ concorrentes}}[/tex]
b) [tex](r) \ x + 3 = 0 \\\\ \boxed{x = -3} \\\\ reta \ vertical \\\\\\ (s) \ x - 1 = 0 \\\\ \boxed{x = 1} \\\\ reta \ vertical \\\\\\ Sendo \ as \ duas \ retas \ verticais, \ s\~{a}o \ \boxed{\boxed{paralelas \ distintas}}[/tex]
c) [tex](r) \ 2x-y+1 = 0 \\\\ \boxed{y = 2x+1} \\\\ m = 2 \\ q = 1 \\\\\\ (s) \ \boxed{y = -\frac{1x}{2} - 3} \\\\ m = -\frac{1}{2} \\\\ q = -3 \\\\ \boxed{\boxed{retas \ concorrentes}}[/tex]
As retas são concorrentes, concorrentes e paralelas.
As retas podem ser paralelas, coincidentes ou concorrentes.
Para definirmos qual a posição relativa entre duas retas, podemos utilizar os vetores normais a elas.
Sendo ax + by = c uma reta, temos que o seu vetor normal é (a,b).
Se os vetores forem múltiplos, as retas podem ser paralelas ou coincidentes. Se os vetores não forem múltiplos, as retas são concorrentes.
Para determinar se os vetores são múltiplos ou não, basta calcular o determinante entre eles: se for igual a 0, então são múltiplos. Se for diferente de 0, então não são múltiplos.
a) De x - 3y = 0, temos o vetor (1,-3).
De y = 3x + 2 temos que -3x + y = 2. Logo, o vetor é (-3,1).
Os vetores não são múltiplos. Portanto, r e s são concorrentes.
b) De 2x - y + 1 = 0 temos o vetor (2,-1).
De y = -x/2 - 3 temos que x + 2y = -6. Logo, o vetor é (1,2).
Os vetores não são múltiplos. Portanto, r e s são concorrentes.
c) De x + 3 = 0 temos o vetor (1,0).
De x - 1 = 0 temos o vetor (1,0).
Como os vetores são iguais e r: x = -3 e s: x = 1, então r e s são paralelas.
Para mais informações sobre retas, acesse: https://brainly.com.br/tarefa/14397575
Agradecemos cada uma de suas contribuições. Seu conhecimento é importante para nossa comunidade. Volte em breve para continuar compartilhando suas ideias. Obrigado por confiar no IDNLearner.com. Estamos dedicados a fornecer respostas precisas, então visite-nos novamente para mais soluções.