Descubra as respostas que procura no IDNLearner.com. Obtenha respostas completas para todas as suas perguntas graças à nossa rede de especialistas em diferentes disciplinas e áreas do conhecimento.

Sendo sen x = -12/13, com x no 3quadrante, determine cos x.

Sagot :

Usando a relação fundamental:

[tex]\boxed{sen^{2}x + cos^{2}x = 1}[/tex]

Podemos achar o cosx. Vamos substituir:

[tex]sen^{2}x + cos^{2}x = 1 \\\\ (-\frac{12}{13})^{2} + cos^{2}x = 1 \\\\ \frac{144}{169} + cos^{2}x = 1 \\\\ cos^{2}x = 1 - \frac{144}{169} \\\\ cos^{2}x = \frac{169}{169} - \frac{144}{169} \\\\ cos^{2}x = \frac{25}{169} \\\\ cosx = \pm \sqrt{\frac{25}{169}} \\\\ cosx = \pm \frac{5}{13}[/tex]

O cosx pode ser negativo ou positivo. Porém, como o x está no terceiro quadrante, cos e sen são negativos.

[tex]\therefore \boxed{\boxed{cosx = -\frac{5}{13}}}[/tex]