Bem-vindo ao IDNLearner.com, sua plataforma de referência para todas as suas perguntas! Nossa comunidade fornece respostas precisas para ajudá-lo a entender e resolver qualquer problema que enfrentar em seu dia a dia.
Sagot :
lim(1/2)^x
x→1
Substitua onde tem x por -1
lim (1/2)^x=(1/2)^-1=1/(1/2)=2
x→1
x→1
Substitua onde tem x por -1
lim (1/2)^x=(1/2)^-1=1/(1/2)=2
x→1
Olha pelo que você escreveu, eu entendi que você quer saber o limite de (1/2)^x quando x tende a -1.
Como (1/2)^x é uma função contínua em R, basta aplicar o ponto na função, assim:
lim (1/2)^x , onde x tende a -1 = (1/2)^(-1)=2.
****Observação: Por abuso de notação escrever lim (1/2)^x , significa saber o limite (1/2)^x com x tendendo ao infinito. E poderia ser resolvido da mesma maneira (tendo em vista a continuidade):
lim (1/2)^x = 0 , pois para números entre zero e um (0 < x <1) o limite com x tendendo ao infinito tende ao zero (pensando fracionariamente você terá seu denominador crescendo mais rápido que o numerador, o que fará com que seu número aproxime de zero quanto maior o número ). Espero ter ajudado
Como (1/2)^x é uma função contínua em R, basta aplicar o ponto na função, assim:
lim (1/2)^x , onde x tende a -1 = (1/2)^(-1)=2.
****Observação: Por abuso de notação escrever lim (1/2)^x , significa saber o limite (1/2)^x com x tendendo ao infinito. E poderia ser resolvido da mesma maneira (tendo em vista a continuidade):
lim (1/2)^x = 0 , pois para números entre zero e um (0 < x <1) o limite com x tendendo ao infinito tende ao zero (pensando fracionariamente você terá seu denominador crescendo mais rápido que o numerador, o que fará com que seu número aproxime de zero quanto maior o número ). Espero ter ajudado
Agradecemos sua participação ativa. Continue fazendo perguntas e fornecendo respostas. Juntos, podemos construir uma comunidade vibrante e enriquecedora, onde todos aprendemos e crescemos. Obrigado por visitar IDNLearner.com. Estamos aqui para fornecer respostas precisas e confiáveis, então visite-nos novamente em breve.