O ponto I (inscentro) do triângulo é a concorrência das três bissetrizes do triângulo.
Bissetriz é uma semi reta que divide cada ângulo do triângulo em dois ângulos côngruos (de mesma medida).
Esta é a chave para a solução.
Traçando-se as bissetrizes passando por cada vértice e pelo ponto I vamos obter todos os ângulos envolvidos na figura, calculando uma série de triângulos sabendo-se que a soma de seus três ângulos é sempre 180, de forma que ao completar as anotações dos ângulos envolvidos obtem-se QIR=122 graus.
A providência anterior nos permite calcular todos os ângulos centrais em I. E sabendo-se que o ângulo inscrito é a metade do ângulo central podemos calcular os ângulos do triângulo PQR:
P: 61 graus
Q: 54 graus
R: 65 graus