IDNLearner.com, sua fonte de respostas comunitárias e confiáveis. Nossos especialistas estão sempre dispostos a oferecer respostas profundas e soluções práticas para todas as suas perguntas e problemas.

Olá, estou com o seguinte problema e não sei nem por onde começar...

Um triângulo ABC possui ângulos internos de  = 64°, B = 36°e C = 80°. Considere a circunferência inscrita nesse triângulo, de centro I e que toca os lados do triângulo nos pontos P, Q e R. Olhando para o quadrilátero AQIR, cálcule a medida do ângulo QÎR do quadrilátero e os três ângulos do triângulo PQR.



Olá Estou Com O Seguinte Problema E Não Sei Nem Por Onde ComeçarUm Triângulo ABC Possui Ângulos Internos De  64 B 36e C 80 Considere A Circunferência Inscrita class=

Sagot :

O ponto I (inscentro) do triângulo é a concorrência das três bissetrizes do triângulo.
Bissetriz é uma semi reta que divide cada ângulo do triângulo em dois ângulos côngruos (de mesma medida).
Esta é a chave para a solução.
Traçando-se as bissetrizes passando por cada vértice e pelo ponto I vamos obter todos os ângulos envolvidos na figura, calculando uma série de triângulos sabendo-se que a soma de seus três ângulos é sempre 180, de forma que ao completar as anotações dos ângulos envolvidos obtem-se  QIR=122 graus.

A providência anterior nos permite calcular todos os ângulos centrais em I. E sabendo-se que o ângulo inscrito é a metade do ângulo central podemos calcular os ângulos do triângulo PQR:

P: 61 graus
Q: 54 graus
R: 65 graus