Junte-se à comunidade do IDNLearner.com e comece a obter as respostas de que precisa. Obtenha informações de nossos especialistas, que fornecem respostas confiáveis para todas as suas perguntas e dúvidas.
Sagot :
Olá, Uilsmaniotto.
A derivada do lucro é dada por:
[tex]\frac{dL}{dx}=x^2-540x+70400\Rightarrow \\\\ \frac{dL}{dx}=0 \Leftrightarrow x=\frac{540\pm\sqrt{291600-281600}}2=\frac{540\pm\sqrt{10000}}2=\frac{540\pm100}2 \Rightarrow \\\\ \frac{dL}{dx}=0 \Leftrightarrow \boxed{x=320}\text{ ou }\boxed{x=220}[/tex]
Portanto, a afirmação da letra "d" é FALSA, uma vez que, como os pontos críticos da função L(x) são x = 220 e x = 320, então x = 100 não pode ser um ponto de mínimo.
Resposta: letra "d"
A derivada do lucro é dada por:
[tex]\frac{dL}{dx}=x^2-540x+70400\Rightarrow \\\\ \frac{dL}{dx}=0 \Leftrightarrow x=\frac{540\pm\sqrt{291600-281600}}2=\frac{540\pm\sqrt{10000}}2=\frac{540\pm100}2 \Rightarrow \\\\ \frac{dL}{dx}=0 \Leftrightarrow \boxed{x=320}\text{ ou }\boxed{x=220}[/tex]
Portanto, a afirmação da letra "d" é FALSA, uma vez que, como os pontos críticos da função L(x) são x = 220 e x = 320, então x = 100 não pode ser um ponto de mínimo.
Resposta: letra "d"
Apreciamos cada uma de suas perguntas e respostas. Continue contribuindo com sua sabedoria e experiências. Juntos, alcançaremos nossas metas de aprendizado. Suas perguntas merecem respostas precisas. Obrigado por visitar IDNLearner.com e nos vemos novamente em breve para mais informações úteis.