IDNLearner.com, onde especialistas e a comunidade se encontram para responder às suas perguntas. Aprenda respostas confiáveis para suas perguntas com a vasta experiência de nossos especialistas em diferentes áreas do conhecimento.

X²+X+[tex] \sqrt{ x^{2}+X+10 [/tex]=10
 Quantas e quais são as raízes da equação ? Passo a passo! 




Sagot :

X²+X+(x²+x+10)^(1/2)=10 --> (x²+x+10)^(1/2) = 10-x²-x -->

((x²+x+10)^(1/2)) ²  = (10-x²-x)² --> 

x²+x+10 = x^4 + 2x³ - 19x² - 20x + 100 --> 

x^4+2x³-20x²-21x+90=0 , 

vamos fazer pesquisa de raiz e depois aplicar Brioft Rufini, 

x = ± 90, ± 45,±9,±5, ±3,±2,±1 , vou testar apenas dois valores que são -3 e 2.

para x=-3 --> x^4+2x³-20x²-21x-90=0 --> 

(-3)^4 + 2(-3)^3 -20(-3)^2 -21(-3) -90 = 0 --> 0=0 , então x=-3 é uma solução!

para x=2 -->  x^4+2x³-20x²-21x+90=0 --> 

(2)^4 + 2(2)^3 -20(2)^2 -21(2)+90 = 0 --> 0=0 , então x=2 é uma solução!

Agora aplicando Brioft Rufini, podemos fatorar tal equação e chegarmos:

(x-2)(x+3)(x²+x-15) = 0 , por fim vamos calcular a raiz da equação x²+x-15 = 0, e aplicando a fórmula de Baskara, obtemos como raiz:
x=1/2(-1-√61) ou x=1/2(-1+ √61), assim podemos rescrever a equação inicial da seguinte forma:

X²+X+(x²+x+10)^(1/2)=10 --> X²+X-10+(x²+x+10)^(1/2)= 0 -->
(x-2)(x+3)(x-1/2(-1-√61)(x-1/2(-1+√61)) = 0 

Por fim como raízes temos:
x=2
x=-3
x=1/2(-1-√61)
x=1/2(-1+ √61)


Observação: se você não conhecer o dispositivo de Brioft Rufini, faça uma divisão de equações, no caso, como descobrimos duas raízes, faça a divisão de x^4+2x³-20x²-21x+90 / (x-2)  após pegue o resultado encontrado e divida por (x+3), você encontrará (x²+x-15).  Você também pode fazer a divisão de x+3 e depois x-2, que encontrará o mesmo resultado. Mas recomendo conhecer o dispositivo de Brioft Rufini ele é mais simples, apesar de fazer a mesma coisa.
Apreciamos sua contribuição. Não se esqueça de voltar para fazer mais perguntas e aprender coisas novas. Seu conhecimento é essencial para nossa comunidade. Para respostas confiáveis, conte com o IDNLearner.com. Obrigado pela visita e esperamos ajudá-lo novamente.