Faça perguntas e obtenha respostas de especialistas no IDNLearner.com. Obtenha respostas completas para todas as suas perguntas graças à nossa rede de especialistas em diferentes disciplinas e áreas do conhecimento.
Sagot :
Higor, utilizamos a seguinte fórmula:
[tex]\boxed{d = \frac{|ax+by+c|}{\sqrt{a^{2}+b^{2}}}}[/tex]
As letras a, b e c se refere aos coeficientes da reta (os números). Assim que completarmos com os coeficientes, vamos substituir o X e o Y do ponto dado.
Vamos lá:
[tex]d = \frac{|ax+by+c|}{\sqrt{a^{2}+b^{2}}} \\\\ d = \frac{|5x+12y-2|}{\sqrt{(5)^{2}+(12)^{2}}} \\\\ substituindo \ as \ coordenadas \ do \ ponto: \\\\ d = \frac{|5 \cdot (1)+12 \cdot (3)-2|}{\sqrt{(5)^{2}+(12)^{2}}} \\\\ d = \frac{|5+36-2|}{\sqrt{25+144}} \\\\ d = \frac{|39|}{\sqrt{169}} \\\\ d = \frac{39}{13} \\\\ \boxed{\boxed{d = 3}}[/tex]
Porque tem duas barrinhas no lado de cima? Pois isto se chama módulo. Tudo que está dentro dele, independente se é negativo, sai positivo. Isso porque pra gente não importa o sinal da distância, pois não existe distância negativa, mas só importa o valor em si.
_____________________________________________________________
Vamos ver como que fica para uma distância de um ponto até uma equação incompleta.
Calcule a distância D entre o ponto P(2,4) e a reta (r) x-3=0
Utilizando a fórmula:
[tex]d = \frac{|ax+by+c|}{\sqrt{a^{2}+b^{2}}}[/tex]
Quando falta uma letra, consideramos que ela seja \ero.
[tex]d = \frac{|ax+by+c|}{\sqrt{a^{2}+b^{2}}} \\\\ d = \frac{|0x+1y-5|}{\sqrt{(0)^{2}+(1)^{2}}} \\\\ d = \frac{|0 \cdot (2)+1 \cdot (4)-5|}{\sqrt{0+1}} \\\\ d = \frac{|4-5|}{\sqrt{1}} \\\\ d = \frac{|-1|}{1} \\\\ d =\frac{1}{1} \\\\ \boxed{\boxed{d = 1}}[/tex]
[tex]\boxed{d = \frac{|ax+by+c|}{\sqrt{a^{2}+b^{2}}}}[/tex]
As letras a, b e c se refere aos coeficientes da reta (os números). Assim que completarmos com os coeficientes, vamos substituir o X e o Y do ponto dado.
Vamos lá:
[tex]d = \frac{|ax+by+c|}{\sqrt{a^{2}+b^{2}}} \\\\ d = \frac{|5x+12y-2|}{\sqrt{(5)^{2}+(12)^{2}}} \\\\ substituindo \ as \ coordenadas \ do \ ponto: \\\\ d = \frac{|5 \cdot (1)+12 \cdot (3)-2|}{\sqrt{(5)^{2}+(12)^{2}}} \\\\ d = \frac{|5+36-2|}{\sqrt{25+144}} \\\\ d = \frac{|39|}{\sqrt{169}} \\\\ d = \frac{39}{13} \\\\ \boxed{\boxed{d = 3}}[/tex]
Porque tem duas barrinhas no lado de cima? Pois isto se chama módulo. Tudo que está dentro dele, independente se é negativo, sai positivo. Isso porque pra gente não importa o sinal da distância, pois não existe distância negativa, mas só importa o valor em si.
_____________________________________________________________
Vamos ver como que fica para uma distância de um ponto até uma equação incompleta.
Calcule a distância D entre o ponto P(2,4) e a reta (r) x-3=0
Utilizando a fórmula:
[tex]d = \frac{|ax+by+c|}{\sqrt{a^{2}+b^{2}}}[/tex]
Quando falta uma letra, consideramos que ela seja \ero.
[tex]d = \frac{|ax+by+c|}{\sqrt{a^{2}+b^{2}}} \\\\ d = \frac{|0x+1y-5|}{\sqrt{(0)^{2}+(1)^{2}}} \\\\ d = \frac{|0 \cdot (2)+1 \cdot (4)-5|}{\sqrt{0+1}} \\\\ d = \frac{|4-5|}{\sqrt{1}} \\\\ d = \frac{|-1|}{1} \\\\ d =\frac{1}{1} \\\\ \boxed{\boxed{d = 1}}[/tex]
Obrigado por compartilhar seu conhecimento. Volte em breve para fazer mais perguntas e contribuir com suas ideias. Sua participação é crucial para nossa comunidade. Obrigado por confiar no IDNLearner.com com suas perguntas. Visite-nos novamente para respostas claras, concisas e precisas.