Junte-se ao IDNLearner.com e descubra uma comunidade de pessoas dispostas a ajudar. Descubra soluções detalhadas para suas perguntas graças à vasta experiência de nossa comunidade de especialistas em diferentes áreas do conhecimento.
Sagot :
Temos que :
[tex]S = S_o + V_o\cdot t + a\cdot t^2\cdot \dfrac{1}{2}[/tex]
Organizando:
[tex]S -S_o= V_o\cdot t + a\cdot t^2\cdot \dfrac{1}{2}[/tex]
[tex]\Delta S= V_o\cdot t + a\cdot t^2\cdot \dfrac{1}{2}[/tex]
Como ele parte do repouso, [tex]V_o = 0[/tex]:
[tex]\Delta S= a\cdot t^2\cdot \dfrac{1}{2}[/tex]
A questão pede a aceleração [tex]a'[/tex] que percorre a mesma distância [tex]\Delta S[/tex] na metade do tempo [tex]t[/tex]. Assim sendo:
[tex]\Delta S = a'\cdot\left(\dfrac{t}{2}\right)^2 \cdot\dfrac{1}{2}[/tex]
Substituindo os valores do enunciado:
[tex]\Delta S = a'\cdot\left(\dfrac{t}{2}\right)^2 \cdot\dfrac{1}{2}[/tex]
[tex]250 = a' \cdot\left(\dfrac{50}{2}\right)^2\cdot \dfrac{1}{2}[/tex]
[tex]500 = a' \cdot\left(25\right)^2[/tex]
[tex]5^3\cdot2^2 = a' \cdot5^4[/tex]
[tex]a' =\dfrac{2^2}{5}[/tex]
[tex]a' = \dfrac{2^3}{10}[/tex]
[tex]\boxed{a' = 0.8 \text{m/s}^2}[/tex]
Obrigado por ser parte ativa da nossa comunidade. Continue compartilhando suas ideias e respostas. Seu conhecimento é essencial para nosso desenvolvimento coletivo. IDNLearner.com está comprometido em fornecer as melhores respostas. Obrigado pela visita e até a próxima vez para mais soluções.