[tex]\frac{cos^2x-sen^2x}{1+tgx}=\frac{1-tgx}{sec^2x} \\
\\
\frac{cos^2x-sen^2x}{1+\frac{senx}{cosx}}=\frac{1-\frac{senx}{cosx}}{\frac{1}{cos^2x}} \\
\\
\frac{cos^2x-sen^2x}{\frac{cosx+senx}{cosx}}=\frac{\frac{cosx-senx}{cosx}}{\frac{1}{cos^2x}} \\
\\
(cosx+senx)(cosx-senx).\frac{cosx}{cosx+senx}=\frac{cosx-senx}{cosx}.cos^2x \\
\\
\boxed{(cosx-senx)cosx=(cosx-senx).cosx}[/tex]