IDNLearner.com, um espaço para troca de conhecimento. Faça suas perguntas e receba respostas detalhadas de nossa comunidade de especialistas, sempre prontos para oferecer ajuda em qualquer tema que você precise.

do alto de um farol um observador pode ver um barco sob um angulo de 30°. sabendo que a altura da torre em relaçao a agua e de 60m calcule a distancia x que o navio se encontra da terra, se prescisa contrua a tabela de razoes trigonometricas 

Do Alto De Um Farol Um Observador Pode Ver Um Barco Sob Um Angulo De 30 Sabendo Que A Altura Da Torre Em Relaçao A Agua E De 60m Calcule A Distancia X Que O Nav class=

Sagot :

Se um triângulo retângulo apresenta um ângulo reto (90º) e um ângulo agudo de 30º, o outro ângulo deve ser 60º. Como ocorre uma semelhança de triângulos, um dos catetos mede 60m e o outro cateto mede x.
Como temos apenas as medidas dos catetos, deve-se utilizar a tangente de 30º (que equivale a razão de cateto oposto/cateto adjacente→ [tex] \sqrt{3}/3 [/tex])

60/x=[tex] \sqrt{3}/3 [/tex]
[tex] \sqrt{3} [/tex]x=180
x=180/[tex] \sqrt{3} [/tex]
Racionalizando:
180/[tex] \sqrt{3} [/tex] . [tex] \sqrt{3} [/tex]/[tex] \sqrt{3} [/tex]
180[tex] \sqrt{3} [/tex]/3=
60[tex] \sqrt{3} [/tex]m




Agradecemos cada uma de suas contribuições. Seu conhecimento é importante para nossa comunidade. Volte em breve para continuar compartilhando suas ideias. Suas perguntas encontram respostas no IDNLearner.com. Obrigado pela visita e volte para mais soluções precisas e confiáveis.