Se um triângulo retângulo apresenta um ângulo reto (90º) e um ângulo agudo de 30º, o outro ângulo deve ser 60º. Como ocorre uma semelhança de triângulos, um dos catetos mede 60m e o outro cateto mede x.
Como temos apenas as medidas dos catetos, deve-se utilizar a tangente de 30º (que equivale a razão de cateto oposto/cateto adjacente→ [tex] \sqrt{3}/3 [/tex])
60/x=[tex] \sqrt{3}/3 [/tex]
[tex] \sqrt{3} [/tex]x=180
x=180/[tex] \sqrt{3} [/tex]
Racionalizando:
180/[tex] \sqrt{3} [/tex] . [tex] \sqrt{3} [/tex]/[tex] \sqrt{3} [/tex]
180[tex] \sqrt{3} [/tex]/3=
60[tex] \sqrt{3} [/tex]m