Explore o IDNLearner.com para encontrar respostas confiáveis. Junte-se à nossa comunidade de especialistas para encontrar as respostas que você precisa em qualquer tema ou problema que enfrentar.

Alguém pode me ajudar ??
Alguém por favor me ajuda nessas questões de estatística???
1- Suponha que o tempo necessário para atendimento de clientes em uma central de atendimento telefônico siga uma distribuição normal de média de 8 minutos e desvio padrão de 2 minutos.


a) Qual é a probabilidade de que um atendimento dure menos de 4 minutos?
b) E mais do que 10 minutos?
c) E entre 6 e 10 minutos?

2- A concentração de aditivos químicos em um tanque de água liberada pela fábrica Alpha tem distribuição N (8; 2,25). Qual a probabilidade, de que num dia aleatório, a concentração seja maior que 9 ppm?

3- Uma empresa de carros sabe que os motores de sua fabricação têm duração normal com média 150000 km e desvio-padrão de 5000 km. Qual a probabilidade de que um carro, escolhido ao acaso, dos fabricados por essa firma, tenha um motor que dure:

a) Menos de 170000 km?
b) Entre 140000 km e 165000 km?
c) Se a fábrica substitui o motor que apresenta duração inferior à garantia, qual deve ser esta garantia para que a porcentagem de motores substituídos seja inferior a 0,2%?


4- Suponha que o escore dos estudantes no ENEM seja uma variável aleatória com distribuição normal com média 550 e variância 900. Se a admissão no curso de Administração exige um escore mínimo de 575, qual é a probabilidade de um estudante ser admitido


Sagot :

Olhe no anexo a tabela que eu usei ,

disponível na rede, olhe a curva de Gauss, não coloquei o endereço da tabela porque aqui o sistema impede...

1)

média=8

DP=2

a)

P(X<4) =P[(X-8)/2 < (4-8)/2)]  

=P(Z < -2) = ψ(-2)  

= 1-ψ(2)   .....ψ(2) ==>tabela Normal Padrão

P(X<4) = =1-0,9772 =0,0228   é a resposta

b)

P(X>10)=P[X-8)/2 >(10-8)/2]

=P[Z > 1]

= 1 -ψ(1)    ...ψ(1)==>  tabela Normal Padrão

=1 -0,8413=0,1587  é a resposta  

c)

P(6 < X < 10) =P[(6-8)/2 < Z < (10-8)/2]  

=ψ(1) - ψ(-1)  

=ψ(1)-[1-ψ(1)]    ...ψ(1)==>  tabela Normal Padrão

=0,8413 -(1 - 0,8413 ) = 0,6826 é a resposta

_______________________________________________

2)

N (8; 2,25)

média=8

DP=2,25

P[X>9]=P[9-8)/2,25 >(9-8)/2,25]

=P[Z>0,44444] =1 - ψ(0,4444)  

ψ(0,4444) ..valor da tabela  Normal Padrão

P[X>9]=1-0,6720 =0,328  é a resposta

______________________________________________

3)

média=150000 km

DP= 5000 km

a)

P[X<170000]=P[Z<(170000-150000)/5000)]

=P[Z<4]  ..ñ tem na tabela ..3,5  já é proximo de 1

=P[Z<4]  =  1 é a resposta

b)

P[ 14000< X<165000]

=P[(140000-150000)/5000< Z<(165000-150000)/5000]

P[-2<Z<3]= ψ(3)-[1-ψ2]

=0,9987 -(1-0,9772) =0,9759

c)

0,2%=0,002

P[X<a]=0,002

P[Z<(a-150000)/5000]=0,002

na tabela (1-0,002) = 0,9980

tabela = -2,88

(a-150000)/5000=-2,88

a=-2,88*5000+150000 = 135600 km

__________________________________________

4)

média=550

Var=900 ==>DP=30

P[X>575]=P[Z>(575-550)/30]

=P[Z>0,8333]=1 -ψ(0,833)

=1 -0,7970 =0,203 é a resposta

View image EinsteindoYahoo