IDNLearner.com, sua plataforma para perguntas e respostas. Aprenda respostas detalhadas para suas perguntas com a vasta experiência de nossos especialistas em diferentes campos do conhecimento.
Sagot :
Resposta:
RESOLUÇÃO LOGO ABAIXO.
Explicação passo-a-passo:
Isolando Sen²x:
sen²x= 1/2
Aplicando raiz quadrada em ambos os lados da igualdade:
Sen x = 1/✓2= √2/2.
Logo, x= π/4 + 2πk, sendo k pertencente aos inteiros.
A partir dos cálculos trigonométricos, a solução da equação é X = π/4 + 2π*n ou 3π/4 + 2π*n para todo n inteiro e positivo.
Para resolver este exercício basta solucionar a equação trigonométrica que foi dada no enunciado de forma direta:
2 sen²x = 1
Resolução da equação:
2 sen²x = 1
sen²x = 1/2
sen(x) = [tex]\sqrt{1/2} [/tex] = 1/[tex]\sqrt{2} [/tex] = [tex]\frac{\sqrt{2} }{2} [/tex]
Sabe-se, pela trigonometria, os valores de seno, cosseno e tangente dos ângulos notáveis 30º, 45º e 60º.
Sendo que sen(45º) = cos(45º) = [tex]\frac{\sqrt{2}}{2} [/tex]
Da mesma forma que sen(135º) = [tex]\frac{\sqrt{2} }{2} [/tex]
Sabe-se que 45º = π/4 e que 135º = 3π/4
Esses resultados voltam a se repetir a cada volta no círculo trigonométrico, portanto a solução geral para X fica:
X = π/4 + 2π*n ou 3π/4 + 2π*n para todo n inteiro e positivo.
Para ampliar seus conhecimentos sobre trigonometria, acesse:
https://brainly.com.br/tarefa/20718884
Agradecemos sua participação constante. Não se esqueça de voltar para compartilhar suas perguntas e respostas. Seu conhecimento é inestimável para nós. Obrigado por escolher IDNLearner.com. Estamos dedicados a fornecer respostas claras, então visite-nos novamente para mais soluções.