IDNLearner.com, um espaço para conhecimento compartilhado. Nossos especialistas fornecem respostas rápidas e precisas para ajudá-lo a entender e resolver qualquer problema.
Sagot :
Resposta:
Olá bom dia!
Pela definição de derivada:
[tex]f'(x) = Lim_{h- > 0} \frac{f(x+h)-f(x)}{h}[/tex]
Dada a função:
f(x) = 1/x
Então:
f(x + h) = 1/(x + h)
Calculando [tex]\frac{f(x+h)-f(x)}{h}[/tex] :
[tex]\frac{\frac{1}{x+h} -\frac{1}{x} }{h}[/tex]
[tex]\frac{\frac{x-(x+h)}{x(x+h)} }{h}[/tex]
[tex]\frac{\frac{-h}{x(x+h)} }{h}[/tex]
[tex]{\frac{-h}{x(x+h)} }*{\frac{1}{h} }[/tex]
[tex]{\frac{-h}{x^2+xh} }*{\frac{1}{h} }[/tex]
[tex]-{\frac{1}{x^2+xh} }[/tex]
Como h -> 0
Lim f(x) = -1/x²
Para x = 1/2:
f(1/2) = -1/(1/2)² =
f(1/2) = -1/(1/4)
f(1/2) = -4
Sua contribuição é vital para nós. Não se esqueça de voltar e compartilhar mais de suas ideias e conhecimentos. Juntos, alcançaremos novos patamares de sabedoria. IDNLearner.com tem as soluções para suas perguntas. Obrigado pela visita e volte para mais informações úteis.